期刊文献+

基于时空图卷积网络的语音驱动个人风格手势生成方法 被引量:1

Speech-driven Personal Style Gesture Generation Method Based on Spatio-Temporal Graph Convolutional Networks
在线阅读 下载PDF
导出
摘要 人们在发言时的手势动作往往具有自己独特的个人风格,研究者们提出了基于生成式对抗网络的语音驱动个人风格手势生成的方法,然而所生成的动作不自然,存在时序上动作不连贯的问题。针对该问题,文中提出了一种基于时空图卷积网络的语音驱动个人风格手势生成的方法,引入以时空图卷积网络为基础的时序动态性判别器,构建手势动作关节点之间空间和时间上的结构关系,并通过时空图卷积网络捕获手势动作关节点在空间上的相关性和提取时序上的动态性特征,使所生成的手势动作保持时序上的连贯性,以更符合真实手势的行为和结构。在Ginosar等构建的语音手势数据集上进行实验验证,与相关方法相比,正确关键点百分比指标提高了2%~5%,所生成的手势动作更自然。 People’s gestures in speaking often have their own unique personal style.Researchers have proposed a speech-driven personal style gesture generation method based on generative adversarial networks.However,the generated actions are unnatural for temporal discontinuity.To solve this problem,this paper proposes a speech-driven personal style gesture generation method based on the spatio-temporal graph convolutional networks,which adds the temporal dynamic discriminator based on spatio-temporal graph convolutional network.The spatial and temporal structural relationships between gesture joint points is firstly constructed,and then the spatial correlation of gesture joint points is captured and the dynamic characteristics in time sequence are extracted through the spatio-temporal graph convolution network(STGCN),so that the generated gestures maintain the consistency in time sequenceand are more consistent with the behavior and structure of real gestures.The proposed method is verified on the speech and gesture dataset constructed by Ginosar et al.Compared with relevant methods,the percentage of correct keypoints improves by about 2%~5%,and the generated gestures are more natural.
作者 张斌 刘长红 曾胜 揭安全 ZHANG Bin;LIU Chang-hong;ZENG Sheng;JIE An-quan(School of Computer&Information Engineering,Jiangxi Normal University,Nanchang 330022,China)
机构地区 江西师范大学
出处 《计算机科学》 CSCD 北大核心 2022年第S02期604-608,共5页 Computer Science
基金 国家自然科学基金(62067004,61662030)
关键词 跨模态生成 手势生成 个人风格学习 时空图卷积网络 时序动态性 Cross-modal generation Gesture generation Personal style learning Spatio-Temporal graph convolutional networks Temporal dynamics
  • 相关文献

参考文献3

二级参考文献26

  • 1饶敏,周淑秋,宫可想.手部运动计算机仿真的实现[J].计算机技术与发展,2006,16(4):28-29. 被引量:3
  • 2Shimada N. Hand gesture estimation and model refinement using monocular camera-Ambiguity limitation by inequality constraints[A].Nara,Japan,1998.268-274.
  • 3Davis J,Shah M. Towards 3D Gesture Recogniton[J].International Journal of Pattern and Artificial Intelligence,1999,(03):381-393.
  • 4Shotton J,Fitzgibbon A,Cook M. Real-time human pose recognition in parts from single depth images[A].2011.
  • 5Girshick R,Shotton J,Kohli P. Efficient regression of general-activity human poses from depth images[A].2011.
  • 6Keskin C,Klrac F,Kara Y E. Real Time Hand Pose Estimation Using Depth Sensors[A].2013.119-137.
  • 7van der Hulst F P J,Sch(a)tzle S,Preusche C. A Functional Anatomy Based Kinematic Human Hand Model with Simple Size Adaptation[A].2012.5123-5129.
  • 8文乐军.人体解剖学[M]北京:北京医科大学出版社,200483-101.
  • 9Claudia,Nolker,Ritter H. Parametrized SOMs for hand posture reconstruction[A].2000.139-144.
  • 10Lin J,Wu Ying,Huang T S. Modeling the Constraints of Human Hand Motion[A].Austin,TX,2000.161-170.

共引文献12

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部