期刊文献+

一种克服sEMG人机交互中肌肉疲劳的SVM算法 被引量:5

An SVM Algorithm for Overcoming the Influence of Muscle Fatigue in sEMG Based Human Machine Interaction
在线阅读 下载PDF
导出
摘要 在基于表面肌电信号的人机交互系统中,产生的肌肉疲劳降低了系统的稳定性。针对该问题,分析肌肉正常状态和疲劳状态下的肌电信号变化规律,提出一种改进的在线支持向量机增量训练算法。该算法在每次训练SVM(Support Vector Machine)模型时,计算各样本到分类超平面的距离,并以之为条件对不断更新的训练数据进行有条件的选择和遗忘,只留下最大距离1/2以内的数据。通过在线训练不断更新训练样本来获得新的SVM模型,用于适应肌肉疲劳过程中肌电信号的变化,同时防止多次在线训练过程中更新的样本改变训练集间初始边界。最后在智能轮椅上进行验证,实验结果表明:该算法有效减少了肌肉疲劳在人机交互系统中的影响,使得系统能够保持长时间稳定操作。 For the problem that the stability of surface Electromyograph (sEMG) based human -machine interface (HMI) declines as the muscle fatigue takes place, an improved incremental training algorithm for online support vector machine (SVM) is proposed. The novel method adjusts the model of SVM to adapt itself based on the changes of sEMG and the training data are conditionally selected and forgotten by the distance of samples to the classification hyperplane. The data are left which is less than half the maximum distance. Through online updating the training samples, a new SVM model is obtained to used to adapt to the changes of EMG, and prevents the change of initial boundary among training sets of sample during the online training process. Intelligent wheelchair experiment results show that the presented algorithm performs high modeling precision and training speed is increased. Furthermore, this method effectively overcomes the influence of muscle fatigue during longterm operating sEMG based HMI.
出处 《控制工程》 CSCD 北大核心 2014年第4期467-471,共5页 Control Engineering of China
基金 国家自然科学基金项目(60905066,51075420) 科技部国际合作项目(2010DFA12160) 重庆市科技攻关项目(CSTC,2010AA2055) 重庆市教委科学技术研究项目(KJ100516)
关键词 sEMG人机交互 肌肉疲劳 在线SVM 改进的增量训练算法 sEMG based HMI muscle fatigue online SVM improved incremental training algorithm
  • 相关文献

参考文献16

  • 1Qin Zhang,Mitsuhiro Hayashibe,Philippe Fraisse.FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking[J].IEEE/ASME Transactions on Mechatronics,2011,16(5):816-826.
  • 2Ali Asadi Nikooyan,Amir Abbas Zadpoor.Effects of muscle fatigue on the ground reaction force and soft-tissue vibrations during running:A model study[J].IEEE Transactions on Biomedical Engineering,2012,59(3):797-802.
  • 3席旭刚,李仲宁,罗志增.基于相关性分析和支持向量机的手部肌电信号动作识别[J].电子与信息学报,2008,30(10):2315-2319. 被引量:14
  • 4潘以桢,胡越明.改进的在线支持向量机训练算法[J].计算机工程,2009,35(22):212-215. 被引量:8
  • 5Ceseracciu E,Reggiani M,Sawacha Z,et al.SVM classification of locomotion modes using surface electromyography for applictions in rehabilitation robotics[C].19th International Symposium on Robot and Human Interactive Communication.Jinan,2010:165-170.
  • 6Wei L,Hu H,Yuan K.Use of forehead bio-signals for controlling an intelligent wheelchair[C].Proc of IEEE International Conference on Robotics and Biomimetics.Bangkok,2009:108-113.
  • 7L Wei,H Hu.EMG and visual based HMI for hands-free control of an intelligent wheelchair[C].IEEE the 8th World Congress on Intelligent Control and Automation.Jinan,2010:1028-1032.
  • 8袁玲,杨帮华,马世伟.基于HHT和SVM的运动想象脑电识别[J].仪器仪表学报,2010,31(3):649-654. 被引量:46
  • 9张毅,许新丽,罗元.基于在线SVM的自适应sEMG人机交互系统[J].华中科技大学学报(自然科学版),2013,41(4):75-79. 被引量:2
  • 10Sakrapee Paisitkriang Krai,Chunhua Shen,Jian Zhang.Incremental training of a detector using online sparse eigendecomposition[J].IEEE Transaction on Image Processing,2011,20(1):213-225.

二级参考文献88

共引文献86

同被引文献42

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部