期刊文献+

基于心电脉搏特征的视觉疲劳状态识别 被引量:11

Visual Fatigue State Recognition Based on ECG Pulse Feature
在线阅读 下载PDF
导出
摘要 为从生物医学信号角度检测和评估视觉疲劳,模拟VDT作业环境,对35位健康被试者进行1.5 h的VDT疲劳实验。使用MP425数据采集卡和LabVIEW构成的数据采集系统同步采集心电(ECG)和脉搏波信号,经信号预处理分析后,提取实验前后的ECG和脉搏波信号特征。研究结果表明,ECG和脉搏波信号特征在实验前后有较大变化,采用支持向量机法对实验前后的ECG脉搏组合特征进行分类,正确率可达100%。 In order to detect and evaluate visual fatigue from biomedical signal,this paper simulates Visual Display Terminal(VDT) operating environment,and tests 35 healthy subjects for 1.5 h VDT fatigue experiment.Electrocardiograph(ECG) signals and pulse wave are collected from the subjects by using the MP425 data acquisition card and LabVIEW acquisition system.ECG and pulse wave signal features are extracted by analyzing and processing before and after VDT fatigue experiment.Analysis results show that ECG and pulse wave signal features change significantly before and after VDT fatigue experiment,the accuracy rate of classification is reached 100% by using Support Vector Machine(SVM) method and combination features of ECG and pulse wave signals.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第7期279-281,共3页 Computer Engineering
基金 国家自然科学基金资助项目(30670529)
关键词 视觉疲劳 心电脉搏特征 支持向量机 visual fatigue Electrocardiograph(ECG) pulse feature Support Vector Machine(SVM)
  • 相关文献

参考文献6

  • 1顾力刚,韩福荣.VDT作业与视觉疲劳[J].人类工效学,2004,10(3):58-60. 被引量:27
  • 2Lin C J,Feng Wenyang,Chao Chin-Jung,et al.Effects of VDT Workstation Lighting Conditions on Operator Visual Workload[J].Industrial Health,2008,46(2):105-111.
  • 3Alty S,Angarita-Jaimes N,Millasseau S C,et al.Arterial Stiffness from the Digital Volume Pulse Waveform[J].IEEE Transactions on Biomedical Engineering,2007,54(12):2268-2275.
  • 4李永亭,齐咏生,肖志云.基于小波变换的动态心电信号伪差识别[J].计算机工程,2009,35(18):269-271. 被引量:7
  • 5Zhang Aihua,Chai Long,Dong Hongsheng.QRS Complex Detection of ECG Signal by Using Teager Energy Operator[C]// Proc.of the 2nd International Conference on Bioinformatics and Biomedical Engineering.Shanghai,China:[s.n.],2008.
  • 6潘以桢,胡越明.改进的在线支持向量机训练算法[J].计算机工程,2009,35(22):212-215. 被引量:8

二级参考文献33

  • 1刘永,郭怀成.城市大气污染物浓度预测方法研究[J].安全与环境学报,2004,4(4):60-62. 被引量:33
  • 2佟彦超.中国重点城市空气污染预报及其进展[J].中国环境监测,2006,22(2):69-71. 被引量:42
  • 3Chouakri S A. Wavelet Denoising of the ECG Signal Based on Noise Estimation[C]//Proc. of the 5th International ISAAC Congress. Catania, Sicily, Italy:[s. n.], 2005: 25-30.
  • 4Mallat S, Zhang S. Characterization of Signal from Multiscale Edge[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992, 14(7): 681-693.
  • 5Vapnik V. The Nature of Statistical Learning Theory[M]. Berlin, Germany: Springer-Verlag, 1999.
  • 6Parrella F. Online Support Vector Regression[D]. Genoa, Italy: University of Genoa, 2007.
  • 7Ralaivola L, d'AlcheBuc F. Incremental Support Vector Machine Learning: A Local Approach[C]//Proceedings of ICANN'01. Vienna, Austria: [s. n.], 2001.
  • 8Shalev-Shwartz S, Singer Y. Tutorial on Theory and Applications of Online Learning[C]//Proc. of ICML'08. Helsinki, Finland: [s. n.], 2008.
  • 9Chang Chih-Chung, Lin Chih-Jen. LIBSVM[Z]. (2008-01-01). http://www.csie.ntu.edu.tw/-cjlin/libsvm.
  • 10Uetake A,Murata A,Otsuka M,et al.Evaluation of visual fatigue during VDT tasks[A].Uetake A.Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communication[C].Osaka:IEEE,2000.1277-1282.

共引文献39

同被引文献66

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部