期刊文献+

带距离徙动校正的压缩感知PFA成像方法

PFA imaging with range migration correction by compressive sensing
原文传递
导出
摘要 目的极坐标格式算法(PFA)是合成孔径雷达(SAR)聚束模式下的一种高分辨率成像算法,方位向增加孔径长度带来了数据存储和传输的负担,利用压缩感知进行合成孔径雷达成像可以减小采样率,以前的研究往往认为图像是2维可分离的而忽略距离徙动的影响,造成了图像质量的下降。提出一种在方位向利用压缩感知处理的PFA成像算法,可以校正距离徙动,保证压缩感知成像的图像分辨率。方法在方位向进行压缩感知处理的过程时,采用了随距离空间频率变化的傅里叶基。结果该方法可以有效代替PFA处理过程中的方位向插值,消除距离徙动的影响,保证距离向和方位向的分辨率。结论仿真和实测数据的处理结果证明了该方法的有效性。 Objective Polar format algorithm is an imaging approach for spotlight mode synthetic aperture radar( SAR). It increases the load of data transmission and storage severely because of the greater synthetic aperture length. Synthetic aperture radar imaging by compressive sensing can reduce the sampling rate. Previous studies result in a decrease in image quality because they assume that the two dimensions of images are separable and ignore the range migration. An imaging approach based on range-cross compressive sensing is presented. It can correct the range migration and ensure the range and range-cross resolution of the image. Method The method introduces the Fourier basis varying with the range spatial frequency,reconstructing the image based on compressive sensing. Result It ensures the range and range-cross resolution because it may be an efficient substitute for Polar format algorithm range-cross interpolation and eliminates the range migration. Conclusion The simulations and live data processing results show the validity of the proposed approach.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第7期1085-1094,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(61071165) 教育部新世纪优秀人才支持计划(NCET-09-0069) 航空科学基金项目(20102052024)
关键词 极坐标格式算法(PFA) 压缩感知 距离向插值 方位向插值 距离徙动校正 potar fonmat algorilhm(PFA) compressive sensing range interpolation range-cross interpolation range migration correction
  • 相关文献

参考文献19

  • 1Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine,2007: 118-124.
  • 2Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly income-plete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Donoho D L, Elad M, Temlyakov V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 5Baraniuk R Steeghs P. Compressive radar imaging[C]//IEEE Radar Conference. Boston, MA, USA: IEEE, 2007:128-133.
  • 6Tello M, Lopez-Dekker P, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J].IEEE Transaetions on Geoscience and Remote Sensing, 2010,48(12):4285-4295.
  • 7Shi G M, Lin J, Chen X Y, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2008, 55(4): 379-383.
  • 8Jouny I. Compressed sensing for UWB radar target signature reconstruction[C]//Proceedings of Digital Signal Processing Workshop and the 5th IEEE Signal Processing Education Workshop. Marco Island, FL, USA: IEEE, 2009: 714-719.
  • 9谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238. 被引量:49
  • 10肖鹏,李春升,于泽.合成孔径雷达压缩感知成像方法[J].北京航空航天大学学报,2011,37(11):1333-1337. 被引量:2

二级参考文献53

  • 1杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报,2006,34(3):491-495. 被引量:9
  • 2Tsaig Y and Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
  • 3Candes E J,Romberg J,and Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 4Baraniuk R and Steeghs P.Compressive radar imaging[C].IEEE Radar Conference,Boston,MA,USA,Apr.17-20,2007:128-133.
  • 5Herman M and Strohmer T.Compressed sensing radar[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,Mar.30-Apr.4,2008:1509-1512.
  • 6Yoon Y S and Amin M G.Compressed sensing technique for high-resolution radar imaging[J].Proceedings of the SPIE,2008,Vol.6968:69681A-69681A-10.
  • 7Varshney K R,Cetin M,and Fisher J W,et al..Sparse representation in structured dictionaries with application to synthetic aperture radar[J].IEEE Transactions on Signal Processing,2008,56(8):3548-3561.
  • 8Potter L C,Schniter P,and Ziniel J.Sparse reconstruction for radar[J].Proceedings of the SPIE,2008,Vol.6970:697003-697003-15.
  • 9Tello M,Lopez-Dekker P,and Mallorqui J J.A novel strategy for radar imaging based on compressive sensing[C].International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-213-II-216.
  • 10Gurbuz A C,Mcclellan J H,and Scott W R Jr.GPR imaging using compressed measurements[C].International Geoscience and Remote Sensing Symposium,International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-13-II-16.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部