期刊文献+

基于小波变换的语音压缩感知处理 被引量:1

Compressed Sensing for Speech Processing Based on Wavelet Transform
原文传递
导出
摘要 文章首先简单介绍了压缩感知(CS)理论框架,然后根据语音信号小波变换系数的特点,提出了改进的压缩感知算法,对高频系数进行压缩处理,低频系数不变。采用基追踪算法重构出高频系数,再利用小波反变换得到原始语音信号。实验结果表明,在相同的测量点数下,本文的算法比原有CS算法在重构语音的信噪比和MOS分上都有较大的提升。 The CS framework is introduced briefly,and then according the features of the wavelet transform coefficients of speech signals,an improved CS algorithm is proposed,which preserves the low frequency wavelet transform coefficients but compresses the high frequency wavelet transform coefficients of the speech.Finally,the high frequency wavelet transform coefficients are recovered by using basis pursuit(BP) algorithm,and then the reconstruction of the speech signal can be achieved by the inverse wavelet transform.Compared with the original CS algorithm,the proposed algorithm has significant improvement on both SNR and the MOS scores of the reconstructed speech at the same measurement number.
作者 沈丹丹
出处 《电子技术(上海)》 2011年第7期10-11,共2页 Electronic Technology
基金 国家自然科学基金(60971129)资助
关键词 压缩感知 小波变换 稀疏性 基追踪 compressed sensing wavelet transform sparsity basis pursuit
  • 相关文献

参考文献3

二级参考文献107

  • 1乔建华,张井岗,张雪英.基于MATLAB的8kb/s CS-ACELP语音编码算法及实现[J].仪器仪表学报,2002,23(z1):194-195. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3孔红山,朱良学,章四兵.FS-1016 CELP语音编码的算法仿真[J].合肥工业大学学报(自然科学版),2006,29(10):1227-1230. 被引量:1
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献763

同被引文献28

  • 1Stefan Kunis,Holger Rauhut.Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit[J]. Foundations of Computational Mathematics . 2008 (6)
  • 2Candes E J.Compressive sampling. Proc.Int.Congr.Math . 2008
  • 3Rauhut H.On the impossibility of uniform sparse reconstructionusing greedy methods. Sampl.Theory Signal Image Process . 2008
  • 4Tropp J A.Greed is good:algorithmic results for sparseapproxi-mation. IEEE Transactions on Information Theory . 2004
  • 5Pati Y C,Rezaiifar R,Krishnaprasad P S.Orthogonal matchingpursuit:Recursive function approximation with applications towavelet decomposition. Proc.27th Asilomar Conf.Signals,Syst.Comput . 1993
  • 6S Mallat,Zhang Z F.Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing . 1993
  • 7Daubechies I.Ten Lectures on Wavelets. CBMS-NSF Series in Appl.Math . 1991
  • 8Ma X,Zhou C,Kemp I J.Automated wavelet selection and thresholding for PD detection. IEEE Electrical Insulation Magazine . 2002
  • 9Satish L,Nazneen B.Wavelet-based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference. IEEE Transactions on Dielectrics and Electrical Insulation . 2003
  • 10D. L. Donoho.Compressed sensing. IEEE Transactions on Information Theory . 2006

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部