期刊文献+

小波图象去噪综述 被引量:256

Overview on Wavelet Image Denoising
在线阅读 下载PDF
导出
摘要 小波图象去噪已经成为目前图象去噪的主要方法之一 .在对目前小波去噪文献进行理解和综合的基础上 ,首先通过对小波去噪问题的描述 ,揭示了小波去噪的数学背景和滤波特性 ;接着分别阐述了目前常用的 3类小波去噪方法 ,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面 ,对小波图象去噪进行了综述 ;最后 ,基于对小波去噪问题的理解 。 Wavelet image denoising has been well acknowledged as an important method of image denoising. Based on many literatures of wavelet denoising, this paper attempts to make an overview of wavelet image denoising. First, it describes wavelet denoising in two ways, one from its mathematics background, the other from filter theory of signal processing. Then this paper classifies wavelet image denoising methods into three classes that includes shrinkage based method, projection based method, and correlation based method, and describes them respectively. Considering the important role that coefficient model plays in a wavelet based denoising scheme, this paper also discusses three kinds of wavelet coefficient model, including intra level model, inter level model, and hybrid model that combine the first two together. Usage of simultaneous wavelet transformations, the relationship between wavelet image denoising and wavelet image compression and wavelet denoising under different noise models are also covered here in order to give an overview as complete as possible. At the end, the future trend of wavelet image denoising is pointed out, though, in personal opinion.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第3期209-217,共9页 Journal of Image and Graphics
基金 清华大学985项目
关键词 小波去噪 小波萎缩 小波变换 图象压缩 图象去噪 图象处理 Wavelet denoising, Wavelet shrinkage, Wavelet transformation, Image compression
  • 相关文献

参考文献66

  • 1[1]Pitas I, Venetsanopoulos A-N. Nonlinear digital filters: Principles and applications[M]. Boston: Kluwer Academic, 1990.
  • 2[2]Astola J. Fundamentals of nonlinear digital filtering[M]. Boca Raton, U.S.A: CRC Press,1997.
  • 3[3]Wtukey J. Exploratory data analysis[M]. New York: Addison Wesley, 1977.
  • 4[4]Justusson B I. Median filtering: Statistical properties[A]. In:Huang H S edi. Two-dimensional digital signal processing, Topics in Applied Physics[M]. Berlin: Springer-Verlag, 1981:161~196.
  • 5[5]Bovik A C, Huang T S, Munson D C. Generalization of median filtering using linear combinations of order statistics[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1983,31(6):1342~1350.
  • 6[6]Coyle E J, Lin J H, Gabbouj M. Optimal stack filtering and the estimation and structural approaches to image processing[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989,37(12):2037~2066.
  • 7[7]Geman D, Reynolds G. Constrained restoration and the recovery of discontinuities[J]. IEEE. Trans. Pattern Analysis and Machine Intelligence, 1992,14(3):367~383.
  • 8[8]Wong E Q, Algazi V R. Image enhancement using linear diffusion and an improved gradient map estimate[A]. In:Proceedings of 1999 IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:154~158.
  • 9[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 10[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.

同被引文献1587

引证文献256

二级引证文献1201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部