期刊文献+

基于微分方程和小波图象去噪研究 被引量:3

Method Based on PDE and Wavelet of Image Denoising
在线阅读 下载PDF
导出
摘要 小波图象去噪是目前图象去噪的主要方法之一,它可以在很好去除噪声的前提下保持图象的细节特征。近年来基于偏微分方程的图象去噪方法得到了广泛的关注。在一定的约束条件下,求解方程的最优解可以达到比较好的去噪的目的。实验结果表明,该方法在图象去噪的效果上要比小波去噪好,去噪后图象的信噪比高。 Wavelet image denoising is regarded as an important method of image denosing,which can preserve the image features.Presently,the image denoising method based on partial differential equations attracts people's attentin.The optimization result of equation with some constrains can denoise perfectly.Compared with wavelet denoising,the paper concludes that the method based on partial differential equations is more better,and with high SNR.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第4期72-74,共3页 Computer Engineering and Applications
基金 中国科学院王宽诚博士后工作奖励基金资助
关键词 偏微分方程 全变差 小波去噪 小波萎缩 信噪比 partial differential quations,total variation,wavelet denoising,waveshrink,SNR
  • 相关文献

参考文献6

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:256
  • 2S Osher,L I Rudin.Feature oriented image enhancement using shock filters[J].SIAM J Num Anal ,1990 ; 27 : 919-940.
  • 3L Rudin,S Osher,E Fatemi.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physica D,1992;60:259-268.
  • 4B R Hunt.The Application of Constrained Least Squares Estimation to image Restoration by Digital Computer[J].IEEE Trans Comput, 1973;C-22: 805-812.
  • 5Gilboa G,Zeevi Y Y,Sochen N.Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes[C].In:Image Processing,Proceedings of 2001 International Conferenee on, 2001-10;3 : 134-137.
  • 6F MALGOUYRES.Minimizing the total variation under a general eonver constraint for image restoration[J].IEEE Trans Image Process, 2002; 11 : 1450-1456.

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献255

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部