期刊文献+

Automatically Eye Detection with Different Gray Intensity Image Conditions 被引量:2

Automatically Eye Detection with Different Gray Intensity Image Conditions
在线阅读 下载PDF
导出
摘要 One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is attended. This paper proposes a method which can automatically detect eye in extensive range of images with different conditions. In the proposed method, first an image is enhanced by morphological operations then region of face is detected by hybrid projection function. To identify window of eye, vertical edge dominance map is used. The authors' method uses elliptical mask on eye image to detect center of pupil. The mask scans eye image to find minimum gray level because pupil is darkest part in eye image compared with 3 well-known methods. The accuracy of 99.53% on this This method has implemented on JAFFE face database and database confirms efficiency of the proposed method.
出处 《Computer Technology and Application》 2012年第8期525-532,共8页 计算机技术与应用(英文版)
关键词 Eye detection hybrid projection function vertical edge dominance map pupil detection. 图像增强 特征检测 灰度值 人眼 生物特征识别 面部特征 人脸区域 自动检测
  • 相关文献

参考文献34

  • 1F.R. Brunelli, T. Poggio, Face recognition: Features versus templates, IEEE Trans. Pattern Anal. Mach. Intell. 15 (10) (1993) 1042-1052.
  • 2D.W. Hanson, Q. Ji, In the eye of the beholder: A survey of models for eyes and gaze, IEEE Transaction on Pattern Analysis and Machine Intelligence 32 (2010) 478-500.
  • 3K.N. Kim, R.S. Ramakrishna, Vision-based eye-gaze tracking for human computer interface, in: Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics, 1999, Vol. 2, pp. 324-329.
  • 4R. Kothari. J.L. Mitchell, Detection of eye locations in unconstrained visual images, in: Proc. lnt'l Conf. Image Processing, 1996, Vol. 3, pp. 519-522.
  • 5M. Nixon, Eye spacing measurement for facial recognition, in: Proc. SPIE Applications of Digital Image Processing, 1985, pp. 279-283.
  • 6A. Perez, M.L. Cordoba, A. Garcia, R. Mendez, M.L.Munoz, J.L. Pedraza, F. Sanchez, A precise eye-gaze detection and tracking system, in: Proceedings of WSCG, 2003, pp. 105-108.
  • 7R. Valenti, I". Gevers, Accurate eye center location and tracking using isophote curvature, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008.
  • 8A. Yuille, P. Hallinan, D. Cohen, Feature extraction from faces using deformable templates, Int'l J. Computer Vision 8 (2) (1992) 99-111.
  • 9P. Baudisch, D.D. Andrew T. Duchowski, W.S. Geisler, Focusing on the essential: Considering attention in display design, Comm. ACM 46 (3) (2003) 60-66.
  • 10S. Kawato, J. Ohya, Real-time detection of nodding and head-shaking by directly detecting and tracking the "between-eyes", in: Proc. IEEE 4th Int'l Conf. Automatic Face and Gesture Recognition, 2000, pp. 40-45.

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部