期刊文献+

Triple Positive Periodic Solutions of Nonlinear Singular Second-order Boundary Value Problems 被引量:1

Triple Positive Periodic Solutions of Nonlinear Singular Second-order Boundary Value Problems
原文传递
导出
摘要 This paper studies the positive solutions of the nonlinear second-order periodic boundary value problem u″(t) + λ(t)u(t) = f(t,u(t)),a.e.t ∈ [0,2π],u(0) = u(2π),u′(0) = u′(2π),where f(t,u) is a local Carath′eodory function.This shows that the problem is singular with respect to both the time variable t and space variable u.By applying the Leggett-Williams and Krasnosel'skii fixed point theorems on cones,an existence theorem of triple positive solutions is established.In order to use these theorems,the exact a priori estimations for the bound of solution are given,and some proper height functions are introduced by the estimations. This paper studies the positive solutions of the nonlinear second-order periodic boundary value problem u″(t) + λ(t)u(t) = f(t,u(t)),a.e.t ∈ [0,2π],u(0) = u(2π),u′(0) = u′(2π),where f(t,u) is a local Carath′eodory function.This shows that the problem is singular with respect to both the time variable t and space variable u.By applying the Leggett-Williams and Krasnosel'skii fixed point theorems on cones,an existence theorem of triple positive solutions is established.In order to use these theorems,the exact a priori estimations for the bound of solution are given,and some proper height functions are introduced by the estimations.
作者 Qing Liu YAO
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第2期361-370,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11071109)
关键词 Periodic boundary value problem singular nonlinearity triple positive solutions fixedpoint theorem Periodic boundary value problem, singular nonlinearity, triple positive solutions, fixedpoint theorem
  • 相关文献

参考文献35

  • 1Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl., 185, 302-320 (1994).
  • 2Cabada, A., Nieto, J. J.: A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems. J. Math. Anal. Appl., 151, 181-189 (1990).
  • 3Cao, Z., Jiang, D.: Periodic solutions of second order singular coupled systems. Nonlinear Anal. TMA, 71, 3661-3667 (2009).
  • 4Chu, J., Torres, P. J., Zhang, M.: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differential Equations, 239, 196-212 (2007).
  • 5Chu, J., Li, M.: Positive solutions of Hill's equations with singular nonlinear perturbations. Nonlinear Anal. TMA, 69, 276-286 (2008).
  • 6Erbe, L. H., Mathsen, R. M.: Positive solutions for singular nonlinear boundary value problems. Nonlinear Anal. TMA, 46, 979-986 (2001).
  • 7Fabry, C., Mawhin, J., Nkashama, M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc., 18, 173-180 (1986).
  • 8Fonda, A., Manasevich, R. F., Zanolin, F:: Subharmonic solutions for some second order differential equa- tions with singularities. SIAM J. Math. Anal., 24, 1294-1231 (1993).
  • 9Gossez, J. P., Pmari, P.: Periodic solutions of a second order ordinary differential equation: a neccesary and sufficient condition for nonresonance. J. Differential Equations, 94, 67-82 (1991).
  • 10Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, Academic Press, San Diago, 1988.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部