摘要
This paper studies the positive solutions of the nonlinear second-order periodic boundary value problem u″(t) + λ(t)u(t) = f(t,u(t)),a.e.t ∈ [0,2π],u(0) = u(2π),u′(0) = u′(2π),where f(t,u) is a local Carath′eodory function.This shows that the problem is singular with respect to both the time variable t and space variable u.By applying the Leggett-Williams and Krasnosel'skii fixed point theorems on cones,an existence theorem of triple positive solutions is established.In order to use these theorems,the exact a priori estimations for the bound of solution are given,and some proper height functions are introduced by the estimations.
This paper studies the positive solutions of the nonlinear second-order periodic boundary value problem u″(t) + λ(t)u(t) = f(t,u(t)),a.e.t ∈ [0,2π],u(0) = u(2π),u′(0) = u′(2π),where f(t,u) is a local Carath′eodory function.This shows that the problem is singular with respect to both the time variable t and space variable u.By applying the Leggett-Williams and Krasnosel'skii fixed point theorems on cones,an existence theorem of triple positive solutions is established.In order to use these theorems,the exact a priori estimations for the bound of solution are given,and some proper height functions are introduced by the estimations.
基金
Supported by National Natural Science Foundation of China(Grant No.11071109)