期刊文献+

Existence of Three Positive Periodic Solutions of Neutral Nonlinear Functional Difference Equations 被引量:1

Existence of Three Positive Periodic Solutions of Neutral Nonlinear Functional Difference Equations
在线阅读 下载PDF
导出
摘要 This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson. This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.
作者 LIU Xing-yuan
出处 《Chinese Quarterly Journal of Mathematics》 2015年第2期172-183,共12页 数学季刊(英文版)
基金 Supported by the Natural Science Foundation of Hunan Province(12JJ6006) Supported by the Science Foundation of Department of Science and Technology of Hunan Province(2012FJ3107)
关键词 positive periodic solution functional difference equation fixed-point theorem positive periodic solution functional difference equation fixed-point theorem
  • 相关文献

参考文献27

  • 1AVEWY R I, PETESON A C. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Comput Math Appl, 2001, 42: 313-322.
  • 2CAl Xiao-chun, YU Jian-she, GAO Zhi-ming. Existence of periodic solutions for fourth order difference equations[J]. Com put Math Appl, 2005, 50:49-55.
  • 3DEIMLING K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag, 1985.
  • 4DEHGHAN M, MAZROOEI-SEBDANI R. Some results about the global attractivity of bounded solutions of difference equations with applications to periodic solutions[J]. Chaos, Solitons Fractals, 2007, 32: 1398- 1412.
  • 5FAN Xuan-long, LI Yong-kun. Positive periodic solutions of neutral functional differential equations with a parameter and impulse[J]. Electronic Journal of Differential Equations, 2008, 38: 1-8.
  • 6DI QING-jiang, O'REGAN D, AGARWAL R P. Optimal existence theory for single and multiple positive periodic solutions to functional difference equations[J]. Appl Math Letters, 2005, 161: 441-462.
  • 7KULENOVIC MRS, LADAS G. Dynimics of Second Rational Difference Equations[M]. Boca Katon, London, New York, Washington: D C Chapman and Hall/CRC, 2002.
  • 8KOCIC V L, LADAS G. Global Behivior of Nonlinear Difference Equations of Higher Order with Applica?tions[M]. Dordrecht/Boston/London: Klower Academic Publishers, 1993.
  • 9LIU Yu-ji, Positive periodic solutions of discrete Lotka-Volterra competition systems with state dependent and distributed delays[J]. Appl Math Comput, 2007, 190: 526-531.
  • 10LIU Yu-ji. Existence of solutions of multi-point BVPs for impulsive functional differential equations with nonlinear boundary conditions[J]. The Journal of Nonlinear Science and Applications, 2012, 2: 133-150.

二级参考文献9

  • 1Kuang,Y., Feldstein, A.,Boundedness of solutions of a nonlinear nonautonomous neutral delay equation, J.Math.Anal. Appl., 1991,156,293-304.
  • 2Gopalsamy, K., He,X., Wen,L., On a periodic neutral logistic equation, GlasgowMath.J.,1991, 33:281-286.
  • 3Gopalsamy, K., Zhang,B.G., On a neutral delay logistic equation, Dynamics StabilitySystems, 1988,2:183-195.
  • 4Pielou,E.C., Mathematics Ecology, New York:Wiley-Interscience, 1977.
  • 5Kuang,Y. Delay Differential Equations with Applications in Population Dynamics, NewYork: Academic Press, 1993.
  • 6Fang Hui, Li Jibin, On the existence of periodic solutions of a neutral delay modelof single-species population growth, J.Math. Anal. Appl., 2001,259:8-17.
  • 7Gaines, R.E., Mawhin, J.L., Coincidence degree and nonlinear differentialequations, Lectures Notes in Mathematics, Vol.586,Berlin: Springer-Verlag,1977.
  • 8Liu,Z.D., Mao,Y.P., Existence theorem for periodic solutions of higher ordernonlinear differential equations, J.Math.Anal.Appl.,1997,216:481-490.
  • 9Petryshyn, W.V., Yu, Z.S.,Existence theorem for periodic solutions of higher ordernonlinear periodic boundary value problems, Nonlinear Anal., 1982,6(9):943-969.

共引文献22

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部