期刊文献+

基于模糊支持向量回归的机场噪声预测 被引量:7

Airport Noise Prediction Based on Fuzzy Support Vector Regression
在线阅读 下载PDF
导出
摘要 在现行通用噪声计算模型基础上建立了一种基于模糊支持向量回归的机场噪声预测模型,通过计算样本的局部孤立因子来确定各个样本的模糊隶属度,以融入模糊支持向量回归算法中。最后,在某机场历史飞行数据的基础上,从对所提出模型的预测精度、抗干扰性、泛化能力进行了验证。结果表明,这种基于局部孤立因子的模糊支持向量回归算法能有效地预测机场周围的噪声等级,且该方法比标准支持向量回归具有更高的预测精度和更好的抗噪声能力。 To predict and prevent the noise around the airport becomes an urgent problem.A new airport noise prediction model based on fuzzy support vector regression is established on the existing generic software for noise calculation.To integrate into the fuzzy support vector regression algorithm,the fuzzy membership of each sample is determined by its local outlier factor.Finally,the prediction accuracy,noise immunity,generalization ability of the proposed model are validated on the historic flight data of an airport.Experiments show that the fuzzy support vector regression algorithm based on local outlier factor can effectively predict the noise levels around airports,and is more accurate and better noise immunity than the standard support vector regression.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第5期722-726,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金重大(61139002)资助项目 中国民航信息技术科研基地开放基金(CAAC-ITRB-201203)资助项目
关键词 机场噪声预测 支持向量机 模糊支持向量回归 模糊隶属度 局部孤立因子 airport noise prediction support vector machine fuzzy support vector regression fuzzy membership local outlier factor
  • 相关文献

参考文献12

  • 1David W F, Gulding J, Dipardo J. Review of inte- grated noise model (INM) equations and processes[R]. NASA/CR-2003-212414,2003.
  • 2Consulting W. The data entry component for the noisemap suite of aircraft noise models[EB/OL]. [2012-01-21]. http ://wasmerconsulting. corn/ baseops, htm.
  • 3Asensio C, Pav I, Ruiz M,et al. Estimation of direc- tivity and sound power levels emitted by aircrafts during taxiing, for outdoor noise prediction purpose [J]. Applied Acoustics, 2007, 68(10): 1263-1279.
  • 4Yang Yingjie, Chris H. Airport noise simulation u- sing neural networks[C]//2008 International Joint Conference on Neural Networks. Piscataway, NJ: IEEE, 2008 : 1917-1923.
  • 5Van F. Criteria for wind farm noise: Lmax and Lden [C] // Acoustics 08 Paris Press Conference. EAA, Paris : [-s. n. 1, 2008 : 4043-4048.
  • 6Hameta J, Besnardb F, Doisyc S, et al. New vehicle noise emission for French traffic noise prediction[J]. Applied Acoustics, 2010,71(9) : 861-869.
  • 7尹志宇.基于L-M神经网络的道路交通噪声预测研究[J].中国环境监测,2009,25(4):84-87. 被引量:7
  • 8Basner M, Siebert U. Markov processes for the pre- diction of aircraft noise effects on sleep[J]. Medical Decision Making, 2010, 30(2) 275-289.
  • 9Lin C F, Wan S D. Fuzzy support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2): 464-471.
  • 10陈海燕,王建东,顾彬.基于融合先验知识SVM的航班延误预警模型[J].南京航空航天大学学报,2009,41(2):243-247. 被引量:9

二级参考文献14

  • 1尹志宇,李青茹,李文娜,马龙生.一种基于L-M算法的组合神经网络模糊控制器[J].电光与控制,2006,13(1):73-77. 被引量:10
  • 2陈可可,姚建,徐磊.BP人工神经网络模型在拉萨道路交通噪声预测中的应用[J].环境科学与管理,2006,31(4):78-81. 被引量:6
  • 3Vapnik V N. The nature of statistical learning theory [M]. 2nd. New York:Springer,2000.
  • 4Wu X,Srihari R. Incorporating prior knowledge with weighted margin support vector machines[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA : ACM Press, 2004 : 326-333.
  • 5Scholkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. Cambridge : MIT Press, 2001.
  • 6Neufville D R,Ordone R A.机场系统--规划设计和管理[M].高金华,译.北京:中国民航出版社,2006.
  • 7Eugene P. Airport capacity., representation, estimation, optimization[J]. IEEE Transaction on Control Systems Technology, 1993,1 (3) : 144-154.
  • 8Platt J C. Fast training of support vector machines using sequential minimal optimization [C]// Scholkopf B, Burges C, Smola A, et al. Advances in Kernel Method: Support Vector Machines. Cambridge :MIT Press, 1998 : 185-208.
  • 9Fabien L,Gerard B. Incorporating prior knowledge in support vector machines for classification:a review [J]. Neurocomputing, 2008,71 (7/9) : 1578-1594.
  • 10陈燕,宋进桂,陈少华,田忠民.城市公路交通噪声的污染与控制[J].公路交通科技(应用技术版),2006,2(12):141-143. 被引量:3

共引文献97

同被引文献47

  • 1胡雪棉,赵国浩.基于Matlab的BP神经网络煤炭需求预测模型[J].中国管理科学,2008,16(S1):521-525. 被引量:42
  • 2刘洲,蔡良才,陈黎明,邵斌,魏海亮,桂小渝.飞机噪声预测与仿真技术研究[J].噪声与振动控制,2013,33(1):77-82. 被引量:6
  • 3E R Boeker, E Dinges, B He. Integrated Noise Model(INM) Ver-sion 7.0 Technical Manual[ R]. Federal Aviation Administration;Office of Environment and Energy, 2008.
  • 4Y Yang, C J Hinde, D Gillingwater. Airport Noise Simulation U-sing Neural Networks[ C]. Proceedings of IEEE International JointConference on Neural Networks, 2008-3 : 1717-1923.
  • 5A Darwiche. Bayesian networks[ J]. Communications of the ACM,2010,53(12); 80-90.
  • 6N A Zaidi,et al. Alleviating Naive Bayes Attribute IndependenceAssumption by Attribute Weighting [ J ]. Machine Learning Re-search, 2013,14(1) :1947-1988.
  • 7E Frank, M Hall, B Pfahringer. Locally Weighted Naive Bayes[C]. Proceedings of the Nineteenth Conference on Uncertainty inArtificial Intelligence, 2003-3:249-256.
  • 8前川善一郎.环境声学与建筑声学[M].北京:中国建筑工业出版社,2001:21-22.
  • 9J E Rosenbaum,E R Boeker,A Buer. Assessment of the HybridPropagation Model, Volume 2: Comparison with the IntegratedNoise Model[R]. Federal Aviation Administration: U.S. Depart-ment of Transportation, 2012.
  • 10M M Zhang, et al. Human Factor Analysis Model of Civil Avia-tion Incidents Based on Bayesian Network [J] . Advanced Materi-als Research, 2013,756(l):3074-3078.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部