期刊文献+

一类孤立因子阈值的计算方法 被引量:1

Class of Methods for Calculating the Threshold of Local Outlier Factor
在线阅读 下载PDF
导出
摘要 介绍一种孤立点因子的评价方法LOF,基于LOF给出一种修改的孤立因子评价标准MLOF,它不仅适用于聚类模式的孤立点发现,还适用于规则模式的孤立点发现;阐述了基于MLOF的一类孤立因子阈值的计算方法,实验表明这种方法具有良好的推荐效果. This paper introduces a modified criterion for evaluating LOF(loeal outlier factor), which is better for discovering another outlier called for clustering pattern outliers not only for discovering regularity pattern outliers. Above all, we propose a class of methods for calculating the threshold value of LOF, and our experiments show that it has a good result for most places.
作者 顾彬 王建东
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第12期2254-2257,共4页 Journal of Chinese Computer Systems
基金 国家“八六三”计划项目(2006AA12A106)资助
关键词 孤立点检测 数据挖掘 推荐系统 outliers detecting data mining recommendation system
  • 相关文献

参考文献11

  • 1Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, et al. Lof: indetifying density-based local outliers[C]. In Proc. of the ACM SIGMOD Conference on Management Of Data, May 2000.
  • 2Hu T, Sung S Y. Detecting pattern-based outliers[J]. Pattern Recognition Letters, 2003,24:3059-3068.
  • 3Wang J, Zhang C, Wu X, et al. SVM-OD: a new SVM algorithm for outlier detection [C]. Proc. ICDM'03 Workshop Foundations and New Directions of Data Minig, 2003, 203-209.
  • 4Malik A, Ken B, Reda A. Hybrid approach to Web content outlier mining without query vector[C]. LN-CS 3589, 2005, 285- 294.
  • 5Malik A, Ken B, Reda A. WCOND-mine: algorithm for detecting Web content outliers from Web documents[C]. Proceedings of the 10th IEEE Symposium on Computers and Communications, 2005.
  • 6Knorr E M, Ng R T, Tucakov V. Distance-based outliers: algorithms and applications[J]. Very Large Data Bases J, 2000,8(3):237-253.
  • 7Zhang T, Ramakrishnan R, Linvy M. BIRCH: an efficient data clustering method for very large databases[C]. Proc. ACM SIGMOD Int. Conf. on Management of Data, ACM Press, New York, 1996,103-114.
  • 8Ng R T, Han J. Efficient and effective clustering methods for spatial data mining[C]. Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, Chile, Morgan Kaufmann Publishers, San Francisco, CA, 1994,144-155.
  • 9Ester M, Kriegel H-P, Sander J, et al. A densit-based algorithm for discovering clusters in large spatial databases with noise[A]. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining[C], Portland, OR, AAAI Press, 1996, 226-231.
  • 10Knorr E M, Ng R T. Algorithms for mining distance-based outliers in large datasets[C]. Proc. 24th Int. Conf. on Very Large Data Bases, New York, NY,1998, 392-403.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部