摘要
介绍一种孤立点因子的评价方法LOF,基于LOF给出一种修改的孤立因子评价标准MLOF,它不仅适用于聚类模式的孤立点发现,还适用于规则模式的孤立点发现;阐述了基于MLOF的一类孤立因子阈值的计算方法,实验表明这种方法具有良好的推荐效果.
This paper introduces a modified criterion for evaluating LOF(loeal outlier factor), which is better for discovering another outlier called for clustering pattern outliers not only for discovering regularity pattern outliers. Above all, we propose a class of methods for calculating the threshold value of LOF, and our experiments show that it has a good result for most places.
出处
《小型微型计算机系统》
CSCD
北大核心
2008年第12期2254-2257,共4页
Journal of Chinese Computer Systems
基金
国家“八六三”计划项目(2006AA12A106)资助
关键词
孤立点检测
数据挖掘
推荐系统
outliers detecting
data mining
recommendation system