期刊文献+

基于动作图像特征的人体运动行为挖掘算法 被引量:2

Mining Algorithm Based on MotionImage Characteristics of Human Movement Behavior
在线阅读 下载PDF
导出
摘要 研究人体行为图像特征识别问题,在人体动作图像中存在大量的和真实行为无关的掩饰动作特征,掩饰动作的存在会大大干扰人体真实行为特征,造成行为真实特征关联的减弱,形成干扰。传统的关联特征挖掘方法在关联干扰的情况下,很难建立准确的行为特征对应空间,使得关联性发生混乱,造成行为特征挖掘错误。提出了一种采用动作特征人体运行行为挖掘算法。利用黄金分割方法,计算动作特征的权值比重,从而删除冗余特征,为人体行为挖掘提供准确的数据基础。利用非线性分类函数,对人体行为特征进行分类,从而实现人体运动行为的挖掘。实验结果表明,利用改进算法能够有效提高人体运动行为识别的准确性,从而有效地对人体运动行为进行有效识别。 The main research is to identify the characteristics of human action image,and a large number of disguise action features which is irrelevant to the real behavior present in human motion picture,the existence of disguise action would significantly interfere with the characteristics of real human behavior,resulting in weakening the association of the behavioral real characteristics,and forming interference.In order to avoid these defects,a mining algorithm based on motion features of human body operation behavior was put forward.The golden section method was utilized to calculate the weight proportion of motion characteristics,so as to delete the redundant features,and provide accurate data basis for human motion behavior mining.A nonlinear classification function was employed to classify the human behavior characteristics,so as to realize the mining of human movement behavior.The experimental results show that the algorithm presented in this paper can effectively improve the accuracy of human movement behavior mining,thus effectively identify human movement behavior.
作者 梁俊卿
出处 《计算机仿真》 CSCD 北大核心 2013年第9期424-427,共4页 Computer Simulation
关键词 运动特征 人体行为 数据挖掘 Movement characteristics Human behavior Data mining
  • 相关文献

参考文献8

二级参考文献35

  • 1樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 2李钢,王蔚,张胜.支持向量机在脑电信号分类中的应用[J].计算机应用,2006,26(6):1431-1433. 被引量:19
  • 3(加)HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4CERVANTES J, LI XIAO-OU, YU WEN. SVM classification for large data sets by considering models of classes distribution[ C]// Proceedings of the 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session. Washington, DC: IEEE Computer Society, 2007:51 - 60.
  • 5NHUNG N P, PHUONG T M. An efficient method for filtering image-based spam[ C]//Proceedings of the 2007 IEEE International Conference on Research, Innovation and Vision for the Future. [ S. l. ] : IEEE Press, 2007:96 - 102.
  • 6KIM D S, NGUYEN H-N. Genetic algorithm to improve SVM based network intrusion detection system[ C] // Proceedings of the 19th International Conference on Advanced Information Networking and Applications. Washington, DC: IEEE Computer Society, 2005:155 - 158.
  • 7DRUCKER H, WU DONG-HUI, VAONICK V N. Support vector machines for spam categorization [ J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1048 -54.
  • 8VAPNIK V N. An overview of statistical learning theory [ J]. IEEE Transactions on Neural Network, 1999, 10(5) : 988 - 999.
  • 9刘伍颖,王挺.一种多过滤器集成学习垃圾邮件过滤方法[C]//全国信息检索与内容安全学术会议论文集.苏州:[出版者不详],2007.
  • 10张云勇 刘锦德.移动agent技术[M].北京:清华大学出版社,2003..

共引文献189

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部