期刊文献+

基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用 被引量:6

Multi-scale feature based double-layer HMM and its application in behavior recognition
在线阅读 下载PDF
导出
摘要 借鉴人类视觉感知所具有的多尺度、多分辨性的特性,针对智能视频监控系统的人体运动行为识别,提出了一种基于多尺度特征的双层隐马尔可夫模型.根据人体行为关键姿态数确定HMM的状态数目,发掘人体运动行为隐藏的多尺度结构间的关系,将运动轨迹和人体姿态边缘小波矩2个不同尺度特征应用于2层HMM,提供更为丰富的行为尺度间的相关信息.分别用Weizmann人体行为数据库和自行拍摄的室内视频,对人体运动行为识别进行仿真实验,结果表明,五状态HMM模型更符合人体运动行为特点,基于多尺度特征的五状态双层隐马尔可夫模型具有较高的识别率. Learning from multi-scale and multi-distinguish attributes of human beings' visual perception and aiming at human movement behavior recognition in intelligent video surveillance system,a double-layer hidden markov model(DL-HMM) is developed based on multi-scale behavior features.Considering the human behavior characteristics,the number of HMM states is according to the number of key gestures selected.Discovering the relationship between the multi-scale structures hidden in the human movement behavior,two different scale features-human motion trajectory and wavelet moment of human gesture's edge,are applied respectively in two layers of DL-HMM,so as to provide more scale information about behavior.Experiments,using Israel Weizmann human behavior database and human actions indoor recorded by ourselves,show the five-state HMM more accords with the human motion behavior characteristics,and the five-state DL-HMM based on multi-scale feature has a higher recognition rate compared with traditional methods using one layer HMM.
出处 《智能系统学报》 北大核心 2012年第6期512-517,共6页 CAAI Transactions on Intelligent Systems
基金 江苏省高校自然科学基金资助项目(09KJB510002) 江苏省博士后科研资助计划资助项目(1001027B) 南京工业大学青年学科基金资助项目(39710006)
关键词 双层隐马尔可夫模型 行为识别 多尺度特征 智能视频监控 double-layer HMM(DL-HMM) behavior recognition multi-scale feature intelligent video surveillance
  • 相关文献

参考文献11

  • 1黎洪松,李达.人体运动分析研究的若干新进展[J].模式识别与人工智能,2009,22(1):70-78. 被引量:38
  • 2WEINLAND D, RONFARD R. A survey of vision based methods for action representation, segmentation and recog- nition [ J ]. Computer Vision and Image Understanding, 2011, 115(2) : 224-241.
  • 3PAU-CHO0 C, De CHIN L. A daily behavior enabled hid- den Markov model for human behavior understanding [ J ]. Pattern Recognition, 2008, 41 (2): 1572-1580.
  • 4NASCIMENTO C J, FIGUEIREDO A M T, MARQUES S J. Trajectory classification using switched dynamical hidded Markov models [ J ]. IEEE Trans on Image Processing, 2010, 19 (5): 1338-1348.
  • 5HERVIEU A, BOUTHEMY P, CADRE J P L. A HMM based method for recognizing dynamic video contents from trajectories [ C ]//Proceedings of International Conference on Image Processing. San Antonio, USA, 2007 : 533-536.
  • 6UDDIN Z, NGUYEN T, JEONG K, et al. Human activity recognition using body joint-angle features and hidden Markov model [ J ]. Electronics and Telecommunications Research Institute, 2011, 33 (4) : 569-579.
  • 7YOUNG L, SUNG C. Activity recognition using hierachical hidden Markov models on a smartphone with 3D accelerom- eter [ C ]//6th International Conference on HAIS. Berlin: Springer-Verlag, 2011 : 460-467.
  • 8钱堃,马旭东,戴先中.基于抽象隐马尔可夫模型的运动行为识别方法[J].模式识别与人工智能,2009,22(3):433-439. 被引量:17
  • 9CHEN Changhong, LIANG Jimin, ZHU Xiuchang. Gait rec- ognition based on improved dynamic Bayesian networks [ J ]. Pattern Recognition, 2011, 44(4): 988-995.
  • 10胡石,梅雪.人体行为动作的形状轮廓特征提取及识别[J].计算机工程,2012,38(2):198-200. 被引量:6

二级参考文献102

  • 1黄士科,陶琳,张天序.一种改进的基于光流的运动目标检测方法[J].华中科技大学学报(自然科学版),2005,33(5):39-41. 被引量:17
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Appleton B, Talbot H. Globally Minimal Surfaces by Continuous Maximal Flows. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1) : 106 -118
  • 4Boykov Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in n-d Images//Proc of the 8th International Conference on Computer Vision. Vancouver, Canada, 2001, I : 105-112
  • 5Criminisi A, Cross G, Blake A, et al. Bilayer Segmentation of Live Video // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 53 -60
  • 6Kim M, Choi J G, Kim D. A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on Spario-Temporal Information. IEEE Trans on Circuits and Systems for Video Technology, 1998, 9(8): 1216-1226
  • 7Collins R T, Lipton A J, Kanade T, et al. A System for Video Surveillance and Monitoring: VSAM Report. Technical Report, CMURI-TR-00-12, Pittsburg, USA: Carnegie Mellon University. Robotics Institute, 2000
  • 8Migliore D A, Matteucci M, Naccari M. A Revaluation of Frame Difference in Fast and Robust Motion Detection// Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks. Santa Barbara, USA, 2006:215 -218
  • 9Barton J L, Fleet D J, Beauchemin S S, et al. Performance of Optical Flow Techniques. International Journal of Computer Vision, 1994, 12(1) : 42 -77
  • 10Adiv G. Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 1985,7 (4) : 384 -401

共引文献56

同被引文献72

  • 1胡硕,朱明,吴川.结合Zernike矩的多尺度模板形状匹配[J].光电工程,2005,32(10):35-38. 被引量:7
  • 2冯伟兴,唐墨,贺波.数字图像模式识别技术详解[M].北京:机械工业出版社.2010:53-64.
  • 3Bobick A F, Davis J W. The recognition of human move- ment using temporal templates [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001,23 (3) : 257 -267.
  • 4Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human actions and interactions [ J ]. Multimedia Systems, 2004,10 (2) : 164-179.
  • 5Wang Ying, Huang Kai-qi, Tan Tie-niu. Abnormal activity recognition in Office based on rtransform[ C ]//2007 IEEE International Conference on Image Processing. 2007:341- 344.
  • 6Alexandros Andre Charaui, Pau Climentperez, Fr-anciso Florez Reueha. Silhouette-based human action recognition using sequence of key poses [ J ]. Pattern Recognition Let- ters, 2013,34 (15) : 1799-1807.
  • 7齐美彬,朱启兵,蒋建国.基于局部描述子的人体行为识别[J].计算机技术与应用,2012,38(7):123-125.
  • 8Niebles J C, Wang H, Li F F. Unsupervised learning of human action categories using spatial-temporal words [ J ]. International Journal of Computer Vision, 2008,79 ( 3 ) : 299 -318.
  • 9Dollar P, Rabaud V, Cotterll G, et al. Behavior recogni- tion via sparse spatio-temporal features [ C ]/! Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 2005 : 65-72.
  • 10Jolliffe I T. Principal Component Analysis(2nd) [M]. New York: Springer-Verlag, 1996.

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部