期刊文献+

用范式理论研究强非线性振动问题 被引量:8

Study on Strongly Non-Linear Vibration Systems by Normal Form Theory
在线阅读 下载PDF
导出
摘要 拓展了范式方法 ,使其可以研究强非线性振动问题。创新之处在于改进了 Nayfeh关于响应频率的选取 ,根据振动过程中基频的变化选取响应的频率。采用本文所提出的方法 ,无论是周期解的稳定性 ,还是渐近解都可以较容易地获得。作为算例 ,用本文提出的方法计算了一般具有平方、立方项强非线性系统的范式及其渐近解、定常解 。 The normal form method is extended to study the strongly non-linear vibration problems.A new selection of the response frequency is proposed. According to it the frequency is determined allowing for the change of the fundamental frequency during vibration rather than by natural frequency suggested by Nayfeh. With the present method both the stability of the periodic solutions and the asymptotic expressions for the periodic solutions can be obtained easily. The results obtained by the method presented coincide very well with the results obtained by numerical integration for the Duffing-Van der Pol-Rayleigh oscillator.
出处 《振动工程学报》 EI CSCD 2000年第3期481-486,共6页 Journal of Vibration Engineering
基金 国家自然科学基金重大基金资助项目! (编号 :19990 5 10 ) 国家重点基础研究专项经费资助项目! (编号 :G19980 2 0 316 )
关键词 非线性振动 强非线性 范式 渐近解 non-linear vibration strong non-linear normal form asymptotic solution
  • 相关文献

二级参考文献1

  • 1陈予恕,非线性振动,1983年

共引文献8

同被引文献54

  • 1余志祥,赵雷.张拉膜结构自振特性研究[J].西南交通大学学报,2004,39(6):734-739. 被引量:18
  • 2徐兆,詹杰民.强非线性振子的受迫振动[J].中山大学学报(自然科学版),1995,34(2):1-6. 被引量:7
  • 3张俊生.薄膜二维振动数理方程的推导与求解[J].榆林学院学报,2006,16(6):29-31. 被引量:7
  • 4Nayfeh A H. Method of Normal Forms[M]. New York, John Wiley & Sons, 1993.
  • 5Nayfeh A H. Method of Normal Forms[M]. New York : John Wiley & Sons, 1993.
  • 6Yu P. Simplest normal forms of Hopf and generalized Hopf bifurcations[J]. International Journal of Bifurcation and Chaos, 1999,10(9):1 917-1 939.
  • 7Yu P,Yuan Y. The simplest normal form for the singularity of a pure imaginary pair and 8 zero eigenvalues [ J ]. Continuous, Discrete Impulsive Systems (DCDIS) ,Series B Applications & Algorithms, 2001, 8(2):219-249.
  • 8王永岗,宋慧芳,胥掌世.双层旋转扁壳非线性振动分析的同伦摄动法[J].清华大学学报(自然科学版),2007,47(8):1389-1392. 被引量:2
  • 9HE J H. Some asymptotic methods for strongly nonlinear equations [ J ]. International Journal of Modern Physics B, 2006,20 ( 20 ) : 1144 - 1199.
  • 10GANJI D D, KARIMPOUR S,SGANJI S S. He~ iteration perturbation method to nonlinear oscillations of mechanical systems with single-de- gee-of freedom[ J]. International Journal of Modem Physics B ,2009, 23( 11 ) :2469 -2477.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部