期刊文献+

冲击振动落砂机在1∶4强共振点附近的动力学特性

DYNAMICAL BEHAVIOR OF THE INERTIAL SHAKER NEAR 1∶4 STRONG RESONANCE POINT
在线阅读 下载PDF
导出
摘要 应用映射的中心流形和范式方法,研究了冲击振动落砂机高维映射在其Jacobian矩阵的一对复共轭特征值±i穿越复平面单位圆周情况下的分岔:应用中心流形理论将Poincaré映射化为二维映射,并得到了1∶4强共振下的范式映射,从而讨论了映射在1∶4强共振点附近的分岔图重组过程,定性分析了冲击振动落砂机在1∶4强共振点及其附近的动力学特性。数值仿真结果也表明:冲击振动落砂机在1∶4强共振点附近存在周期运动的Neimark-Sacker分岔和一些复杂分岔,如周期4轨道的Ton型和Tout型相切分岔。 The local bifurcation of an inertial shaker, concerning one complex conjugate pair of eigenvalues ±i of the Jacobian matrix of the mapping escaping the unit circle simultaneously, is investigated by using the center manifold theorem technique and normal form method of the mapping. A center manifold theorem technique is applied to reduce the Poincare mapping to a two-dimensional one, and the normal form mapping associated with 1 : 4 strong resonance is obtained. Thusly, the changing process of the bifurcation diagrams of the mapping near 1 : 4 strong resonance point is discussed. The local dynamical behavior of an inertial shaker near 1 : 4 strong resonance point is investigated by using qualitative analysis. The results from numerical simulation also illustrate that Neimark-Sacker bifurcation of periodic-impact motions and some complicated bifurcations, e.g., Ton and Tout types of tangent bifurcations of period-4 orbits, are found to exist in the inertial shaker near 1 :4 strong resonance point.
出处 《工程力学》 EI CSCD 北大核心 2008年第8期194-199,211,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10572055 50475109) 甘肃省自然科学基金项目(3ZS062-B25-007 3ZS042-B25-044)
关键词 冲击振动 强共振 中心流形 范式 分岔 混沌 vibro-impact strong resonance center manifold normal form bifurcation chaos
  • 相关文献

参考文献14

二级参考文献34

  • 1谢建华.一类碰撞振动系统的余维二分叉和Hopf分叉[J].应用数学和力学,1996,17(1):63-73. 被引量:39
  • 2程崇庆.共振情况下非自治系统的Hopf分支[J].中国科学(A辑),1989,20(10):1046-1055. 被引量:4
  • 3胡海岩.力学系统混沌的主动控制[J].力学进展,1996,26(4):453-463. 被引量:32
  • 4皮宝齐.混凝土机械和桩工机械[M].北京:中国建筑工业出版社,1982..
  • 5S.普拉卡什.土力学[M].北京:水利电力出版社,1984..
  • 6闻邦椿 刘树英 张纯宇.机械振动学[M].北京:冶金工业出版社,1999..
  • 7[1]Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1986.
  • 8[2]Wigins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].(Reprinted).New York:Springer-Verlag,1991.
  • 9[3]Wiggins S.Global Bifurcations and Chaos,Analytical Methods[M].New York:Springer-Verlag,1988.
  • 10[4]Bazejczyk-Okolewska B,Kapitaniak T.Co-existing attractors of impact oscillator[J].Chaos,Solitons & Fractals,1998,9(8):1439-1443.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部