期刊文献+

微机械陀螺检测接口建模及前置放大器优化 被引量:7

Modeling of sensing interface for micromachined gyroscope and its front-end optimization
在线阅读 下载PDF
导出
摘要 为了进一步提高微机械陀螺的极限分辨率,建立了基于SOI工艺的微机械陀螺的检测接口模型,并设计了与之相匹配的前置接口放大器。首先,根据陀螺表头的实际结构建立了微机械陀螺表头的RC集总参数模型和微机械陀螺检测接口的噪声模型,分析了检测接口主导噪声源及提高极限分辨率的措施。然后,在跨阻式前置放大器的基础上设计了改进的与检测接口匹配的T型前置放大器。实验结果表明:相比于跨阻式前置放大器,采用改进的T型前置放大器的等效噪声输入电流由1.18pA/√Hz降低至0.27pA/√Hz,对应的电容极限分辨率可达到0.62aF/√Hz。结果显示,采用与检测接口匹配的T型前置放大器提高了微机械陀螺的极限分辨率。 To improve the resolving limit of a micromachined gyroscope,a sensing interface model for the micromachined gyroscope fabricated by Silicon on Insulator(SOI) process was established,and a matching front-end was designed.Firstly,a RC lumped parameter model for the gyroscope was established based on the practical gyroscope structure,then a noise model for the sensing interface was built.The dominant noise source and methods to improve the resolving limit were analyzed.Finally,on the foundation of a TIA front-end,an improved T-network front-end was designed to match the sensing interface.Experimental results indicate that the T-network front-end improves the sensing interface equivalent input noise current from 1.18 pA/√Hz to 0.27 pA/√Hz,corresponding to a capacitive resolution of 0.62 aF/√Hz as compared to those of the transimpedance front-end.It suggests that the improved T-network front-end can reach a better resolution.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第7期1734-1740,共7页 Optics and Precision Engineering
基金 武器装备预研基金资助项目(No.9140A09011011BQ02) 国家863高技术研究发展计划资助项目
关键词 微机械陀螺 接口模型 极限分辨率 T型前置放大器 micromachined gyroscope interface model resolving limit T-network front-end
  • 相关文献

参考文献13

  • 1刘危,解旭辉,李圣怡.微机械惯性传感器的技术现状及展望[J].光学精密工程,2003,11(5):425-431. 被引量:35
  • 2BARBOUR N, SCHMIDT G. Inertial sensor tech- nology trends [J]. IEEE Sensors Journal, 2001, 1 (4) :332-339.
  • 3YAZDI N, AYAZI F, NAJAFI K. Micromachined inertial sensors [J]. Proceedings of the IEEE, 1998, 86(8) : 1640-1659.
  • 4JASON K P H. Modeling and Identification of the Jet Propulsion Laboratory Vibratory Rate Mi- crogyroscope [D]. Los Angeles: Mechanical engi-neering, University of California, 2002.
  • 5CHOI B D, PARK S, KO H, etal.. The first sub- deg/hr bias stability silicon-microfabricated Gyro- scope [C]. Solid-State Sensors, Actuators and Mi- crosystems , Transducers, 2005: 180-183.
  • 6JIANG X S. Capacitive Position-sensing Interface for Micromachined Inertial Sensors [D]. Califor- nia: University of California, Berkeley, 2003.
  • 7ACAR C. Robust Micromachined Vibratory Gyro- scopes [D]. California:Irvine University of Califor- nia, 2004.
  • 8GABRIELSON T B. Mechanical-thermal noise in micromachined acoustic and vibration sensors [J].IEEE Trans on Electron Devices, 1993, 40 (5) : 903-909.
  • 9刘梅,周百令.硅微陀螺机械热噪声研究[J].仪器仪表学报,2006,27(z2):1163-1164. 被引量:2
  • 10FRANC() S. Design with Operational Amplifiers and Analog Integrated Circuits [M]. New York:McGraw Hill, 2002.

二级参考文献24

  • 1[1]W.A.Clark.Micromachined vibratory rate gyroscopes:Dissertation[D].Berkeley:The University of California,1997.
  • 2[2]T.B.Gabrielson.Mechanical-thermal noise in micromachined acoustic and vibration sensors[J].IEEE Transaction on Electron Devices,1993,40(5).
  • 3ROCKSTAD H K, TANG T K, REYNOLDS. A miniature, high-sensitivity, electron tunneling accelerometer[J].Sensors and Actuators, 1996,53:227-231.
  • 4BURNS D W, HORNING R D, HERB W R, et al. Sealed-cavity resonant mierobeam accelerometer[J]. Sensors and Actuators, 1996, A53: 249-255.
  • 5SPINEANU A, BENABES P, KIELBASA R. A piezoelectric accelerometer with sigma-delta servo technique[J].Sensors and Actuators, 1997,A60,127-133.
  • 6LEMKIN M A, BOSER B. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics[J]. IEEE J Solid-State Circuits, 1999,34(4) ,456-468.
  • 7XUESONG J, SEEGER J I, KRAFT M, et al . A monolithic surface micromachined Z-axis gyroscope with digital output[A]. To be Published at the Symposium on VLSI Circuits [C]. Hawaii, USA, 2000.
  • 8KRAFT M. Micromachined inertial sensors state of the art and a look into the future[EB/OL]. http://www. sensor. com/.
  • 9ROYLANCE L M, ANGELL J B. A batch-fabricated silicon accelerometer[J].IEEE Trans Electron Devices,1979 ,ED-26 : 1911-1917.
  • 10KRAFT M, LEWIS C P, HESKETH T G. Closed loop silicon accelerometers[J]. IEE Proceedings-Circuits,Devices and Systems, 1998,145(5) :325-331.

共引文献34

同被引文献49

  • 1陈怀,张嵘,周斌,陈志勇.微机械陀螺仪温度特性及补偿算法研究[J].传感器技术,2004,23(10):24-26. 被引量:38
  • 2杨波,苏岩,施芹,周百令.硅微机械陀螺仪的机电接口模型分析[J].中国惯性技术学报,2005,13(5):49-53. 被引量:4
  • 3李大威,郭圣权.微硅陀螺静态漂移自回归模型辨识研究[J].计测技术,2005,25(6):23-24. 被引量:2
  • 4殷刚毅.MEMS器件IP库及系统应用[J].传感技术学报,2005,18(4):886-889. 被引量:6
  • 5BARBOUR N,SCHMIDT G.Inertial sensor tech nology trends[J].IEEE Sensors Journal,2001,1(4):332-339.
  • 6YAZDI N,AYAZI F,NAJAFI K.Micromachined inertial sensors[J].Proceedings of the IEEE,Au gust 1998,86(8):1640-1659.
  • 7YOLED(E)VELOPPEMENT.Technology trends for inertial MEMS 2011[EB/OL].http://www.yole.fr.
  • 8SHARMAA,ZAMANMF,ZUCHERM,etal..A 0.1°/HR bias drift electronically matched tuning fork microgyroscope[C].IEEE 21st International Conference on Micro Electro Mechanical Systems,MEMS 2008,Tucson,2008:6-9.
  • 9JASON K P H.Modeling and identification of the Jet Propulsion Laboratory vibratory rate microgyroscope[D].American:Mechanical engineering,University of California,2002.
  • 10JIANG X S.Capacitive position-sensing interface for micromachined inertial sensors[D].America:University of California,Berkeley,2003.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部