期刊文献+

基于高斯间距核回归的产品设计时间预测

Product Design Time Forecast by Using Gaussian Margin Kernel Regression
在线阅读 下载PDF
导出
摘要 为克服产品设计时间预测中的小样本和异方差噪音问题,建立一种基于高斯间距核回归(Gaussian margin kernel regression,GMKR)预测模型。首先,假定核函数回归模型的权重向量服从高斯分布,利用相对熵与输出概率密度的自然对数和设计优化目标,构建GMKR模型;然后,假设高斯分布的协方差阵为对角矩阵以简化GMKR模型,并利用粒子群算法求解相应优化问题。最后,以注塑模具设计的实例进行分析,结果表明基于GMKR的时间预测模型可行有效。 There exist problems of small samples and heteroscedastic noise in design time forecast. To solve them, Gaussian margin kernel regression (GMKR) is proposed. First, the Gaussian distribution over weight vectors for the kernel - based regression is assumed for GMKR, and the optimization objective function of GMKR is designed by considering both the relative entropy and the sum of the natural log of the output probability densities. Then, the optimization problem of GMKR is simplified by assuming the covariance matrix of the Gaussian distribution to be a diagonal matrix, and its relevant optimization problem is solved based on particle swarm optimization algorithm. Finally, the effectiveness of GMKR is verified by our experiment results on the time forecast of plastic injection mold design.
作者 商志根
出处 《盐城工学院学报(自然科学版)》 CAS 2013年第2期9-12,34,共5页 Journal of Yancheng Institute of Technology:Natural Science Edition
关键词 设计时间 预测 核函数 相对熵 异方差 Design time Forecast Kernel function Relative entropy Hcteroscedasticity
  • 相关文献

参考文献14

二级参考文献42

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:190
  • 2许多,严洪森.基于模糊支持向量机的产品设计时间估计方法[J].中国机械工程,2005,16(6):533-537. 被引量:9
  • 3郭健,陈勇,孙炳楠,楼文娟.基于多传感器信息融合的结构损伤识别研究[J].振动工程学报,2005,18(2):155-160. 被引量:11
  • 4车红昆,项占琴,程耀东.超声检测信号时频邻域自适应消噪技术[J].机械工程学报,2007,43(6):226-231. 被引量:10
  • 5邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 6CASE T J, WAAG R C. Flaw identification from time and frequency features of ultrasonic waveforms[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1996, 43(4): 592-600.
  • 7SONG S J, KIM H J, CHO H. Development of an intelligent system for ultrasonic flaw classification in weldments[J]. Nuclear Engineering and Design, 2002, 212(1-3): 307-320.
  • 8LAWRENCE A K. Sensor and data fusion concepts and applications[M]. Beijing: Beijing Institute of Technology Press, 2004.
  • 9CHO S H, EPPINGER S D. A simulation-based process model for managing complex design projects[J]. IEEE Transactions on Engineering Management,2005,52(3):316-328.
  • 10GIBBS M N. Bayesian Gaussian processes for regression and classifieation[D]. Cambridge, UK : University of Cambridge, 1997.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部