期刊文献+

多标签数据挖掘技术:研究综述 被引量:32

Multi-label Data Mining:A Survey
在线阅读 下载PDF
导出
摘要 传统的单标签数据挖掘技术研究对象中,每个样本仅属于一个类别标签,但在实际应用中一个样本更倾向于同时具备多个属性,即属于多标签数据类型。多标签数据挖掘技术现已成为数据挖掘技术中的一个研究热点。其研究成果广泛地应用于各种不同的领域,如图像视频的语义标注、功能基因组、音乐情感分类以及营销指导等。从多标签数据挖掘的方法和度量方式两个方面对多标签数据挖掘进行了系统详细的阐述,最后归纳了目前研究中存在的问题和挑战并展望了本领域的发展趋势。 In traditional single-label data mining,each sample belongs to only one label.However,an real-world object usually associates with more than one attribute.Multi-label data mining is motivated by increasing requirements of mo-dern applications and is widely applied in many fields,such as semantic annotation of images and video,functional geno-mics,music categorization into emotions and directed marketing,which has attracted significant attention from a lot of researchers.This paper systematically introduced technology of multi-label data mining from two aspects:methods and evaluation metrics.Finally,we summarized some problems and challenges in current study and gave prospects of the tendency in this area.
出处 《计算机科学》 CSCD 北大核心 2013年第4期14-21,共8页 Computer Science
基金 国家自然科学基金(60970070 61033007 60803043)资助
关键词 多标签 数据挖掘 分类 排序 度量 Multi-label Data mining Classification Ranking Metrics
  • 相关文献

参考文献56

  • 1Matthew R B, Luo Jie-bo, Shen Xi-peng, et al. Learning multi-la- bel scene classification[J]. Pattern Recognition, 2004(37) : 1757- 1771.
  • 2Zhang Min-ling, Zhou Zhi-hua. MI-kNN: A lazy learning ap- proach to multi-label learning [J]. Pattern Recognition, 2007 (40) : 2038-2048.
  • 3Xu Xin-shun, Jiang Yuan, Peng Liang, et al. Ensemble approach based on conditional random field for multi-label image and video annotation[C]//Proceedings of the 19th ACM international conference on Multimedia. Scottsdale, Arizona, USA, 2011: 1377-1380.
  • 4Wang Jing-dong, Zhao Ying-hai, Wu Xiu-qing, et al. A transduc- tive multi-label learning approach for video concept detection [J]. Pattern Recognition, 2011(44) : 10-11.
  • 5Snoek C, Worring M, Gemert J V, et al. The challenge problem for automated detection of 101semantic concepts in multimedia [C]//Proceedings of the ACM Multimedia. Santa Barbara, CA, USA, 2006 : 421-430.
  • 6Clare A,King R. Knowledge discovery in multblabel phenotype data[C]//Proceedings of the 5th European Conference on Prin- ciples of Data Mining and Knowledge Discovery (PKDD). Freiburg, Germany, 2001 : 42-53.
  • 7Elisseeff A, Weston J. A kernel method for multi-labelled classifi cation[J]. Advances in Neural Information Processing Systems, 2001(14) : 681-687.
  • 8Blockeel H, Schietgat L, Struyf J, et al. Decision trees for hierar- chical multilabel classification: A case study in functional ge- nomics[C] // Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4213 LNAI. 2006:18-29.
  • 9Cesa-Bianchi N, Gentile C, Zaniboni L. Hierarchical classifica- tion:combining bayes with svra[C] // Proceedings of the 23rd International Conference on Machine learning. 2006:177-184.
  • 10Li Guo-zheng, You Ming-yu, Ge Lei, et al. Feature selection for semi-supervised multi-label learning with application to gene function analysis[C]//Proceedings of the First ACM Interna- tional Conference on Bioinformaties and Computational Biology. Niagara Falls, New York, 2010 : 354-357.

二级参考文献64

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 3Shen X,Boutell M,Luo J,Brown C.Multi-label machine learning and its application to semantic scene classification//Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22.
  • 4Hullermeier E,Furnkranz J,Cheng W,Brinker K.Label ranking by learning pairwise preferences.Artificial Intelligence,2008,172(16):1897-1916.
  • 5Read J.A pruned problem transformation method for multi-label classification//Proceedings of the New Zealand Computer Science Research Student Conference.New Zealand,2008:143-150.
  • 6Tsoumakas G,Vlahavas I.Random k-labelsets:An ensemble method for multilabel classification//Proceedings of the ECML.Warsaw,Poland,2007:406-417.
  • 7Schapire R,Singer Y.BoosTexter:A boosting-based system for text categorization.Machine Learning,2000,39(2):135-168.
  • 8Zhang M,Zhou Z.Multilabel neural networks with applications to functional genomics and text categorization.IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 9Zhang M,Zhou Z.A k-nearest neighbor based algorithm for multi-label classification//Proceedings of the IEEE International Conference on Granular Computing.Beijing,China,2005,2:718-721.
  • 10Clare A,King R.Knowledge discovery in multi-label phenotype data//Proceedings of the ECML/KDD.Freiburg,Germany,2001:42-53.

共引文献455

同被引文献246

引证文献32

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部