期刊文献+

中文微博情感分类的简单多标签排序算法 被引量:3

Simple multi-label ranking for Chinese microblog sentiment classification
在线阅读 下载PDF
导出
摘要 针对中文微博文本情感分类中每个样本最多只有两种有序情感标签的情形,提出了一种简单的多标签排序算法——TSMLR,该算法采用两步学习和两步分类的策略,通过学习情感标签之间的主次关系,对微博文本的情感进行分类并对情感标签进行排序。首先,将一个多标签排序问题转化为八个多类单标签分类问题,分别对主要情感标签和次要情感标签进行学习;然后,利用得到的分类模型对微博表达的情感进行两步分类,首先给出主要情感标签,再给出次要情感标签。通过在NLP&CC2014的中文微博文本情感分析评测数据集上进行实验,与校准标签排序方法(CLR)相比,TSMLR方法的准确度和平均精度分别提高了8.59%和9.28%,1-错误率相应下降了9.77%,而且TSMLR所需的训练时间相对较少。实验结果表明:TSMLR对标签之间顺序关系的学习能够有效提高对中文微博情感分类的准确率。 In order to solve a specific case that each sample has two emotional labels at most in emotion classification of Chinese microblog text, a simple multi-label ranking algorithm named TSMLR was proposed. The proposed algorithm employed the strategy of two-stage learning and two-stage classification, and gave classification and ranking emotional labels for each mieroblog text by learning the relations between labels. Firstly, it transformed the emotion classification problem into eight single-label classification problems. One learning model was trained for the dominant emotion and seven learning models were trained for the secondary emotion. It classified for the dominant emotion label at first, then chose the corresponding classification model for the secondary emotion label. The experiment was conducted on the dataset of Chinese Weibo Texts provided by NLP&CC2014. The results showed that the proposed method improved the accuracy and average precision by 8.59% and 9.28% respectively, and decreased the one-error by 9.77% accordingly, compared to the method of Calibrated Label Ranking (CLR). In addition, the running time of the proposed method was lower than those of the two baseline methods. These experimental results illustrate that the proposed algorithm can effectively learn the label order and make more accurate emotion classification for Chinese microblog.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2721-2726,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61363029 71340025) 广西区科学研究与技术开发项目(桂科攻14124005-2-1) 广西可信软件重点实验室项目(KX201311)
关键词 情感分析 中文微博 多标签排序 情感分类 两步策略 sentiment analysis Chinese microblog multi-label ranking emotion classification two-stage strategy
  • 相关文献

参考文献25

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:551
  • 2周胜臣,瞿文婷,石英子,施询之,孙韵辰.中文微博情感分析研究综述[J].计算机应用与软件,2013,30(3):161-164. 被引量:81
  • 3贺飞艳,何炎祥,刘楠,刘健博,彭敏.面向微博短文本的细粒度情感特征抽取方法[J].北京大学学报(自然科学版),2014,50(1):48-54. 被引量:29
  • 4欧阳纯萍,阳小华,雷龙艳,徐强,余颖,刘志明.多策略中文微博细粒度情绪分析研究[J].北京大学学报(自然科学版),2014,50(1):67-72. 被引量:23
  • 5LIU S, CHEN J. A multi-label classification based approach for sen- timent classification [ J]. Expert Systems with Applications, 2015, 42(3) : 1083 - 1093.
  • 6YANG J, JIANG L, WANG C, et al. Multi-label emotion classifi- cation for tweets in weibo: method and application [ C]// ICTAI: Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE Press, 2014: 424 - 428.
  • 7WANG M, LIU M, FENG S, et al. A novel calibrated label ranking based method for multiple emotions detection in Chinese microhlogs [ C]// NLPCC 2014: Proceedings of the Third CCF Conference on Natural Language Processing and Chinese Computing, CCIS 496. Berlin: Springer-Verlag, 2014:238-250.
  • 8CUI A, ZHANG H, LIU Y, et al. Lexicon-based sentiment analysis on topical Chinese microblog messages [ M]// LI J, QI G, ZHAO D, et al. Semantic Web and Web Science. Berlin: Springer-Ver- lag, 2013:333-344.
  • 9张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 10SHEN Y, LI S, ZHENG L, et al. Emotion mining research on mi- cro-blog [ C]// SWS 2009: Proceedings of the 1st 1EEE Symposi-um on Web Society. Piscataway: 1EEE Press, 2009:71 -75.

二级参考文献139

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:391
  • 4M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 5Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 6M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 7H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 8Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 9Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 10E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.

共引文献930

同被引文献26

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部