期刊文献+

HEPES溶液中钯纳米颗粒的制备及对Suzuki反应的催化

Synthesis of palladium nanoparticles in HEPES solution and its catalytic activity for Suzuki reaction
在线阅读 下载PDF
导出
摘要 以氯化钯为反应原料,在HEPES溶液中采用回流法合成钯纳米颗粒,该法具有环境友好、简便的特点.运用能量分析光谱仪(EDX)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和选区电子衍射(SAED)对所合成样品进行表征.考察了表面活性剂、反应时间对纳米颗粒分散性和尺寸的影响.测定了钯纳米颗粒对Suzuki反应的催化活性及重复使用效果.结果表明,所合成的钯粒径在10~13nm之间,PVP的存在可提高纳米钯的分散性、减小颗粒尺寸,过长的反应时间不利于小颗粒及分散性好的钯颗粒的形成.所合成的纳米钯在乙醇/水体系中对Suzuki反应有很好的催化活性和循环使用稳定性,催化活性显著高于商业化的钯碳催化剂,重复使用3次产率均可达90%以上. Pd nanoparticles were facile and environmentally friendly synthesized from PdC12 in HEPES (2-[4-(2-hydroxyethyl)-l-piperazinyl-]ethanesulfonic acid) solution via refluxing method. The products were characterized by energy dispersive spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The influence of surfactant and reaction time on dispersity and the size of Pd nanoparticles were investigated. The results showed that the size of Pd nanoparticles is in the range of 10 to 13 nm; the existence of PVP can increase the dispersity and reduce the size of Pd nanoparticles.Exceed reaction time is not in favor of the formation of well dispersed and small Pd nan- oparticles. The as-synthesized Pd nanoparticles exhibited high catalytic activity and reused stability toward the Suzuki reaction in the ethanol/water system. The catalytic activity of Pd nanoparticles is apparent higher than that of commercial Pd/C catalyst. The yield can arrive to more than 90% after three reused.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期221-224,228,共5页 Journal of Central China Normal University:Natural Sciences
基金 教育部新世纪优秀人才支持计划(NCET-09-0136) 湖北省自然科学基金项目(2011CDB219) 湖北省教育厅重点项目(D20111510) 武汉市科技局对外科技合作与交流计划(201171034319)
关键词 纳米钯 HEPES溶液 制备 催化 SUZUKI反应 palladium nanoparticles HEPES solution synthesis catalysis Suzuki reaction
  • 相关文献

参考文献20

  • 1Nadagouda M N, Polshettiwar V, Varma R S. Self-assemblyof palladium nanoparticles: synthesis of nanobelts, nano- plates and nanotrees using vitamin B1, and their application in carbon-carbon coupling reactions [J]. J Mater Chem, 2009, 19:2026- 2031.
  • 2Srimani D, Sawoo S, Sarkar A. Convenient synthesis of pal- ladium nanoparticles and catalysis o{ hiyama coupling reaction inwater[J].Org Lett, 2007, 9: 3639-3642.
  • 3Jin Z, Yu C, Wang X, et al. Hydrodechlorination of chloro- phenols at low temperature on a novel Pd catalyst[J]. Chem Commun, 2009, 29: 4438-4440.
  • 4Tessonnier J P, Pesant L, Ehret G, et al. Pd nanoparticies introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Appl Catal A, 2005, 288: 203-210.
  • 5周忠信,张曼征,万学适.烯烃在Pd/C催化剂上加氢中的取代基效应和含氮添加剂的影响[J].华中师范大学学报(自然科学版),1991,25(2):184-189. 被引量:1
  • 6Suzuki A. Cross-coupling reactions via organoboranes[J]. J Organomet Chem, 2002, 653: 83-90.
  • 7Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995 - 1998[J]. J Organomet Chem, 1999, 576: 147-168.
  • 8O'Brien C J, Kantchev E A B, Valente C, et aL Easily pre- pared air-and moisture stable Pd - NHC (NHC= N-hetero- cyclic carbene) complexes: A reliable, user-friendly, highly active palladium precatalyst for the Suzuki - Miyaura reac- tion[J]. Chem - EurJ, 2006, 12: 4743-4748.
  • 9Dai W M, Zhang Y. A family of simple amide-derived air- stable P, O-ligands for Suzuki cross coupling of unactivated aryl ehlorides[J]. Tetrahedron Lett, 2005, 46: 1377-1381.
  • 10Marek G, Villiger A, Buchecker R. Aryl couplings with heterogeneous palladium catalysts [J]. Tetrahedron Lett, 1994, 35: 3277-3280.

二级参考文献39

  • 1Shipway A.N., Katz A., and Willner I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem., 2000, 1 (1): 18.
  • 2Sun R.W.Y., Chen R., Chung N.P.Y., Ho C.M., Lin C.L.S., and Che C.M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells, Chem. Commun., 2005, 40: 5059.
  • 3Milliron D.J., Hughes S.M., Cui Y., Manna L., Li J., Wang L.W., and Alivisatos A.P., Colloidal nanocrystal heterostructures with linear and branched topology, Nature, 2004, 430: 190.
  • 4Liz-Marzan L.M., Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir, 2006, 22 (1): 32.
  • 5Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.K.H., Chiu J.F., and Che C.M., Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem., 2007, 12: 527.
  • 6Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., and Mirkin C.A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997, 277: 1078.
  • 7Chan W.C.W. and Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 1998, 281: 2016.
  • 8Han M., Gao X., Su J.Z., and Nie S., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol., 2001, 19:631.
  • 9Mirkin C.A., Letsinger R.L., Mucic R.C., and Storhoff J.J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382: 607.
  • 10Schultz S., Smith D.R., Mock J.J., and Schultz D.A., Single-target molecule detection with nonbleaching multicolor optical immunolabels, Proc. Natl. Acad Sci. USA, 2000, 97 (3): 996.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部