期刊文献+

乙醇/水体系负载型纳米Cu/Fe二元合金的合成、改性及其还原三氯乙烯的性能 被引量:3

Preparation and Modification of Supported Nano Cu/Fe Bimetal Alloy in Ethanol-water Solution and Its Reduction-chlorination Property for Trichloroethylene
在线阅读 下载PDF
导出
摘要 在乙醇/水体系中采用KBH4液相还原法,以石墨微粉为载体,Cu为复合金属,通过两步法合成了具有球状团簇结构的负载型纳米Cu/Fe二元合金.与单纯负载型纳米Fe0相比,该复合材料对三氯乙烯(TCE)具有更高的还原脱氯性能,纳米Fe0的质量浓度为10 g/L时,5 h内能将10 mg/L的TCE完全去除.将十六烷基三甲基溴化铵(CTAB)用于负载型纳米二元合金的表面改性,改性后的材料对TCE的还原脱氯性能提高.改性材料连续降解TCE 36 d,10.2 mg/L TCE在7 h内即完全去除,材料改性后不易氧化失活,还原性能保持长期稳定. Supported nano Cu/Fe bimetal alloy with a spherical nanocluster structure was synthesized in ethanol-water solution by using KBH4 as the reducing agent and Cu as the complex metal when micro-scale graphite was used as a support material. This supported nano bimetal alloy showed the better reductive dechlorination property for trichloroethylene than the supported nano Fe^0 in the solution. TCE of 10 mg/L was completely removed in 5 h when Fe^0dosage was 10 g/L. The cationic surfactant cetyltrimethyl ammonium bromide(CTAB) was used to modify the surface of the supported nano bimetal alloy. The reduction effect of the material for TCE was enhanced after being modified. During the 36 d of continuous dechlorination, the modified supported nano bimetal alloy shows a highly stable property for TCE removal. The experiment results show that 10. 2 mg/ L TCE could be completely reduced in 7 h by the supported nano bimetal alloy in the 36th day.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第12期2234-2238,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20477019)资助
关键词 乙醇/水体系 负载型纳米Cu/Fe二元合金 还原脱氯 三氯乙烯 表面改性 Ethanol-water system Supported nano Cu/Fe bimetal alloy Reduction-dechlorination Trichlo-roethylene Surface modification
  • 相关文献

参考文献21

  • 1Juszezyk W. , Pielaszek J. , Karpinski Z. , et al.. Applied Catalysis A-General [ J ] , 1996, 144(1/2) : 281-291
  • 2Ponder S. M. , Darab J. G. , Bucher J. , et al.. Chem, Mater. [J] , 2001, 13(2) : 479-486
  • 3Ponder S. M. , Darab J. G. , Mallouk T. E.. Environ. Sci. Technol. [J], 2000, 34:2564-2569
  • 4Lien H. L. , Zhang W. X. Colliods and Surface A: Physiochemical and Engineering Aspects[J], 2001, 191:97-105
  • 5李铁龙,金朝晖,刘海水,王薇,李海莹,韩璐.Span/Tween混合表面活性剂微乳液制备纳米铁及脱硝研究[J].高等学校化学学报,2006,27(4):672-675. 被引量:17
  • 6Zhang W. X.. Journal of Nanoparticle Research[J] , 2003, (5) : 323-332
  • 7Daniel W. E. , Zhang W. X.. Environ. Sci. Technol. [J], 2001,35:4922-4925
  • 8Korte N. E. , Zutman J. L. , Schlosser R. M. , et al.. Waste management[J] , 2000, (20) : 687-694
  • 9胥思勤,王焰新.表面活性剂改性岩矿材料去除废水中氯代烃的实验研究[J].地球科学(中国地质大学学报),2004,29(1):55-58. 被引量:9
  • 10Larson R. A. , Jafvert C. T. , Bosca F.. Environ. Sci. Technol. [J], 2000, 34:505-508

二级参考文献32

  • 1梁起,康定学.利用沸石处理含NH_4^+工业废水[J].河南化工,1994,13(1):27-28. 被引量:1
  • 2沈耀良.废水处理中的几种廉价吸附剂[J].重庆环境科学,1995,17(3):49-53. 被引量:29
  • 3陈龙武,甘礼华,岳天仪,周恩绚.微乳液反应法制备氧化铝(含水)超细微粒[J].高等学校化学学报,1995,16(1):13-16. 被引量:37
  • 4全燮,杨凤林,薛大明,赵雅芝,冯文国,苍郁.钯-铁催化还原法对水中三氯乙烯的快速脱氯研究[J].大连理工大学学报,1997,37(1):46-48. 被引量:34
  • 5章安安.挥发性卤代烃、水和废水监测分析方法指南(中册)[M].北京:中国环境科学出版社,1997.270-286.
  • 6林鸿福.有机膨润土的应用及其制备[J].地质实验室,1988,4(2):134-139.
  • 7Shoemaker S H.Permeable Reactive Barriers.In:Rumer R R,Mitchell J K.Assessment of Barrier Containment Technologies.Baltimore Maryland:International Containment Technology Workshop,1995.301 ~353.
  • 8Liu C M,Xu Z L,Du Y G,et al.Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun,the northeast of China.Atmospheric Environment,2000,34(26):4459~4466.
  • 9Gillham R W,O'Han nesin S F.Metal-catalyzed abiotic degradation of halogenated organic compounds.In:Smith E J.International Association Hydrogeologist Conference"Modern Trends in Hydrology".Hamilton,Ontario,Canada:Balkema Publishers,Netherlands,1992.94~103.
  • 10Li T,Farrell J.Reductive dechlorination of trichloroethylene and carbon tetrachloride using iron and palladized-iron cathodes.Envi ron.Sci.Technol.,2000,34(1):173~179.

共引文献85

同被引文献75

  • 1李铁龙,金朝晖,刘海水,王薇,李海莹,韩璐.Span/Tween混合表面活性剂微乳液制备纳米铁及脱硝研究[J].高等学校化学学报,2006,27(4):672-675. 被引量:17
  • 2Alowitz M. J. , Scherer M. M.. Environ. Sci. Technol. [J] , 2002, 36:299-306.
  • 3Wilkin R. T. , Su C. , Ford R. G. , et al.. Environ. Sci. Technol. [J] , 2005, 39:4599--4605.
  • 4Deng B., Burris D. R., Campbell T. J.. Environ. Sci. Technol. [J], 1999, 33:2651--2656.
  • 5Xu Y. , Zhao D.. Water. Res. [J] , 2007, 41:2101--2108.
  • 6Kanel S. R. , Manning B. , Charlet L. , et al.. Environ. Sci. Technol. [J] , 2005, 39:1291--1298.
  • 7Ponder S. M. , Darab J. G. , Mallouk T. E.. Environ. Sci. Technol. [J] , 2000, 34:2564--2569.
  • 8Cao J. , Zhang W. X.. J. Hazard. Mater. [J] , 2006, 132:213--219.
  • 9Li F. , Vipulanandan C. , Mohanty K. K.. Colloids and Surfaces A: Physicochem. Eng. Aspects[J] , 2003, 223:103--112.
  • 10He F. , Zhao D.. Environ. Sci. Technol. [J], 2005, 39:3314--3320.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部