期刊文献+

CL-20/TNT共晶炸药的制备、结构与性能 被引量:30

Preparation,Structure and Properties of CL-20/TNT Cocrystal
在线阅读 下载PDF
导出
摘要 通过溶液共结晶法制得CL-20/TNT共晶炸药,采用扫描电镜(SEM)和X射线单晶衍射对其形貌和结构进行了表征,该晶体属于正交晶系,Pbca空间群,晶胞参数:a=0.9735(2)nm,b=1.9912(6)nm,c=2.4695(6)nm,α=β=γ=90°,V=4.787 nm3,Z=8。采用差示扫描量热(DSC)法分析了共晶炸药的热分解,并测定了其撞击感度,结果表明,CL-20/TNT共晶炸药在180~275℃间放热分解,并将TNT熔点显著提高50℃左右;共晶炸药撞击感度较低,并将CL-20撞击感度明显降低87%%。 A novel CL-20/TNT cocrystal explosive was prepared by cocrystallization in solution, and its morphology was characterized by scaning electron microscopy (SEM), and the crystal structure was determined using single crystal X-ray. Results show that the crystal is orthorhombic, space group Pbca with crystal parameters of a =0.9735(2) nm, b=1.9912(6) nm, c=2.4695(6) nm, α=β=γ=90°, V = 4. 787 nm3, Z = 8. The thermal decomposition and impact sensitivity of the product were measured by differential scanning calorimetry (DSC) and sensitivity test, respectively. The results reveal that the exothermic decomposition of CL-20/TNTcocrystal explosive occurs in the temperature range of 180 -275 ~, and the melting point of TNT significantly increases by about 50 ℃. CL-20/TNT cocrystal has lower impact sensitivity and the impact sensitivity of CL-20 obviously reduces by 87%.
出处 《含能材料》 EI CAS CSCD 北大核心 2012年第6期674-679,共6页 Chinese Journal of Energetic Materials
基金 国家自然科学基金面上项目(No.11072225) 中物院发展基金面上项目(No.2010B0302040) 中国博士后基金(No.2012M511944)资助
关键词 物理化学 共晶炸药 CL-20 TNT 晶体结构 性能 physical chemistry cocrystal explosive CL-20 TNT crystal structure property
  • 相关文献

参考文献29

  • 1SikderA. K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military ans space application [J].J Hazard Mater, 2004, 112 (2) : 1 -15.
  • 2Fischer N, Karaghiosoff K, KlapOtkeTM, etal. New energetic materials featuring tetrazoles and nitramines-synthesis, character- ization and properties[J]. Z Amorg AIIg Chem, 2010, 636(4) : 735 -749.
  • 3Van der Heijden A E, Bouma R H B. Crystallization and charac- terization of RDX, HMX, and CL-20 [J]. Crys Growth Des, 2004, 4(5): 999 -1007.
  • 4Kim C K, Lee B C, Lee Y W, et al. Solvent effect on particle morphology in recrystallization of HMX using supercritical carbon dioxide as antisolvent[J]. Korean J Chem Eng Technol, 2009, 26(4): 1125-1129.
  • 5Kim K I, Kim H S. Coating of energetic materials using crystalli- zation[J]. Chem Eng Technol, 2005, 28(8): 946 -951.
  • 6曾贵玉,聂福德,刘兰,陈瑾,黄辉.聚氨酯原位结晶包覆HMX的研究[J].含能材料,2011,19(2):138-141. 被引量:8
  • 7Bond A D. What isacocrystal?[J]. CrystEngComm, 2007, 9 (4) : 833 -834.
  • 8Dunitz J D. Crystal and co-crystal: a second opinion[J]. Cryst Eng Comm, 2003, 5(2) : 506 -507.
  • 9Weyna D R, ShattockT, Zaworotko MJ. Robustsupramolecular heterosynthons in chiral ammonium carboxylate salts[J]. Cryst Growth Des, 2008, 8(4) : 1106 -1109.
  • 10AIshahateet S F. Synthesis and X-ray crystallographic analysis of pharmaceutical model rac-ibuprofen cocrystal[J]. J Chem Crys- tallogr, 2011 , 41 (3) :276 -279.

二级参考文献40

共引文献46

同被引文献244

引证文献30

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部