期刊文献+

小波变换和特征加权融合的人脸识别 被引量:17

Face recognition based on wavelet transform and weighted fusion of face features
原文传递
导出
摘要 在人脸识别领域,提取人脸特征和降低维数是人脸识别的关键。传统的基于小波变换的人脸识别算法仅在小波分解的低频分量上提取用于分类的图像特征,造成了高频分量中部分对识别有利信息的丢失。为了更有效地提取人脸图像特征,提出一种基于小波变换和特征加权融合的人脸识别算法。首先通过小波变换对人脸图像进行降维处理,然后对4个小波子图分别运用主成分分析法(PCA)提取特征,并把这4部分特征加权融合,最后利用支持向量机(SVM)进行分类识别。在ORL人脸库上进行实验验证,识别准确率可达到97.5%,实验结果表明该算法能够有效提高人脸识别能力,与传统识别算法相比具有较高的识别准确率和识别速度。 Obtain appropriate low-dimension face features is an important problem in the area of face recognition. Tradi- tional face recognition algorithms based on wavelet transform extract image features using only the low frequency components for classification, which results in the loss of information, which could be used for face recognition. In order to effectively extract the face image features, a new algorithm of face recognition based on wavelet transform and weighted fusion of fea- tures is proposed in this study. First, the wavelet transform is used to reduce the dimensionality; then, the features of the four wavelet sub-graphs are extracted by a principal component analysis (PCA), and the features of the four parts are fused into discriminant features. Finally, the features are classified and recognized by SVM. Experimental results on the ORL face database show that the proposed algorithm achieves a recognition accuracy of 97.5 percent, so the new algorithm can effectively improve the face recognition ability. It has a higher recognition accuracy than traditional methods.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第12期1522-1527,共6页 Journal of Image and Graphics
关键词 人脸识别 小波变换 主成分分析 加权融合 支持向量机 face recognition wavelet transform principal component analysis weighted fusion support vector machine
  • 相关文献

参考文献10

  • 1Stan Z L, Anil KJ. Handbook of Face Recognition [M]. New York: Springer, 2004: 141-144.
  • 2Kirby M, Sirovich L. Application of the KL procedurefor the charaeterzation of human faces [J]. IEEE Transactions on Pat?tern Analysis and Machine Intelligence, 1990 , 12(1) :103-108.
  • 3Turk M, Pentland A. Eigenfaces for recognition [J]. Cognitive Neurosci, 1991,3(1) :71-86.
  • 4张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 5ChienJ T, Wu C C. Discriminant waveletfaces and nearest fea?ture classifiers for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 ( 12 ) : 1644-1649.
  • 6杨军,袁红照.结合小波变换和图像主元分析的人脸识别[J].计算机工程与应用,2010,46(4):1-3. 被引量:15
  • 7Rafael C G, Richard E W. Digital Image Processing [MJ. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010: 483484.
  • 8Sang K K, YounJ P, Kar A T. SVM-based feature extraction for Face recognition [J]. Pattern Recognition, 2010 ,43 (8) :2871- 2881.
  • 9Li W H, Liu LJ, Gong W G. Multi-objective uniform design as a SVM model selection tool for face recognition [J]. Expert Sys?tems with Applications, 2011 ,38 (6): 6689-6695.
  • 10Ergun G, Niyazi K, Ahmet S, Osman N U. Evaluation of face recognition techniques using PCA, wavelets and SVM [J]. Ex?pert Systems with Applications, 2010,37 (9): 6404-6406.

二级参考文献10

  • 1Kirby M, Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 2Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience, 1991,3(1 ) :71-86.
  • 3Yang M H.Kernel eigenfaces vs Kernel fisherfaces:Face recogni- tion using Kernel methods[C]//IEEE Conference Automatic Face and Gesture Recognition(AFGR), 2002: 215-220.
  • 4Gottumukkal R,Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter,2004, 25(4) :429-436.
  • 5Yang J,Zhang D,Frangi A F,et al.Two dimensional PCA:A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,24(1):131-137.
  • 6Wang L W,Wang X,Zhang X R, et al.The equivalence of two-dimensional PCA to line-based PCA[J].Pattern Recognition Letters, 2005,26( 1 ) : 57-60.
  • 7Yang J,Yang J Y.From image vector to matrix:A straightforward image projection technique IMPCA vs PCA[J].Pattern Recognition, 2002,35(9) : 1997-1999.
  • 8Xu Yong,Zhang D.An approach for directly extracting features from matrix data and its application in face recognition[J].Neurocomputing, 2008,71 : 1857-1865.
  • 9Zhang D Q,Zhou Z H.(2D)^2PCA:Tow-directional tow-dimensional PCA for efficient face representation and recognition[J].Neurocomputing, 2005,69( 1/3 ) :224-231.
  • 10Antanini M,Barlaud M,Mathlec P,et al.Image coding using wavelet transform[J].IEEE Trans IP, 1995,1 (2) :205-220.

共引文献39

同被引文献183

引证文献17

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部