期刊文献+

液体火箭共底破裂爆炸安全设防距离 被引量:4

Fortification distance for prevention of liquid rocket explosion
在线阅读 下载PDF
导出
摘要 针对航天发射场一旦发生低温推进剂泄漏而导致火箭爆炸,会对人员和财产造成重大损失的问题,采用TNT当量模型和TNO(The Netherlands Organization)多能模型计算不同摩尔百分比的氢氧推进剂混合反应时产生爆炸冲击波的危害性,并模拟爆炸冲击波造成的事故影响范围,然后对两种模型的仿真结果加以对比分析,根据最不利原则选取出最终需要的结果,最后划分出安全设防距离。由仿真结果可知,不同的氢氧混合摩尔百分比造成的爆炸后果不同,同时TNT当量模型在爆炸近场处高估了爆炸超压值,在爆炸远场处低估了爆炸超压值,而TNO多能模型在理论上有效地对这一缺陷进行了弥补。对航天发射场的安全布局起到了一定的参考价值。 Leakage of cryogenic propellants at a space launch center may lead to rocket explosion, causing great losses. In this paper, we use the TNT equivalent model and the TNO (The Netherlands Organization) model to evaluate the risk of shock wave for different mole percentages of reaction in hydrogen and oxygen propellant mixed. The effects of the accident caused by the blast are also simulated. The simulation results of the two models are analyzed and compared. The results are determined by the principles of most unfavorable conditions. Finally the fortification distance is partitioned. The simulation results show that different molar percentages of hydrogen and oxygen mixed cause different consequences of explosion. It is found that the TNT equivalent model overestimates the value of explosion overpressure in the blast near-field and underestimates the explosion overpressure in the blast far-field. The TNO multi-energy model, however, can overcome these limitations effectively in theory.
出处 《火灾科学》 CAS CSCD 2012年第3期131-136,共6页 Fire Safety Science
基金 总装试验技术研究项目"航天发射场加注系统风险评估研究" 基金号:2010SY4106007
关键词 TNT当量模型 TNO多能模型 摩尔百分比 爆炸 危害性 设防距离 TNT equivalent model TNO model Mole percentage Blast Risk Fortification
  • 相关文献

参考文献12

  • 1Farber EA. Characteristics of liquid rocket propellant explosion phenomena (Part Ⅷ. Prediction of Explosive Yield and Other Characteristic of Liquid Propellant Rocket Explosions) [R]. Florida: Florida Enineering and Industrial Experiment Station, 1969.
  • 2Baker WE, Kulesz JJ, Ricker RE, etal. Workbook for predicting pressure wave and fragment effects of explo- ding propellant tanks and gas storage vessels[R]. Wash- ington,D, C: National Aeronautics and Space Adminis-tration, 1977.
  • 3Becker, Dorothg L. Space Propulsion Hazards Analysis Manual[R]. Baltimore: Johns Hopkins University, 1989.
  • 4Merex WPM,Van Den Berg AC, Van Leeuwen D. Ap- plication of correlations to quantify the source strength of vapour cloud explosions in realistic situations (Final report for the project.- GAMES) [R]. Rijswijk, The Netherlands: TNO Prins Maurits Laboratory, 1998.
  • 5Fletcher RF. Liquid propellant explosions[J].Journal ofspacecraft and rockets, 1968(10):1227-1229.
  • 6DOD 6055. 9-STD. DOD Ammunition and Explosives Safety Standards[S]. October 5, 2004.
  • 7Mercx WPM, Van Den Berg AC. Methods for the calcu- lation of physical effects(Yellow Book)[M]. The Neth- erlands: TNO, 1997.
  • 8Joint Army-Navy-NASA-Air force (JANNAF) Hazards Working Group. Chemical rocket propellant hazards. General safety engineering design criteria[R]. AD 889763.
  • 9国家安全生产监督管理总局.安全评价[M].北京:煤炭工业出版社,2005
  • 10Willoughby AB, Wilton AB, Mansfield J. Liquid pro- pellant explosive hazards, Vol. 1I test data [ S ]. AD 857342.

共引文献36

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部