期刊文献+

改进量子交叉遗传算法在TSP问题中的应用 被引量:8

Improved Quantum Crossover Based GA and Its Application to Traveling Salesman Problem
在线阅读 下载PDF
导出
摘要 为提高遗传算法求解旅行商问题的效率,提出了一种改进量子交叉算子遗传算法.与经典量子全干扰交叉算子中城市的选择完全依赖于其位置的选择策略相比,新算子在选择城市时加入了父代优质解的有用信息,从而在维持解的多样性的同时,提高交叉所产生新解的质量.仿真算例结果表明,改进交叉算子遗传算法有着良好的全局搜索和局部挖掘能力,针对TSP问题的最优解、平均解均优于传统算法. In order to improve the efficiency of Genetic Algorithm (GA) to Traveling Salesman Problem (TSP), an improved quantum crossover is proposed in this paper. Compared with the traditional quantum crossover in which a city is selected according to the position, the new crossover selects a city depending on the distance comparing. The new cross- over can maintain the diversity of population and generate higher quality solutions. Simulation result shows that the im- proved quantum crossover based GA has good ability in global exploration and local exploitation. The best solution and the average solutions on TSP are all superior to those of traditional algorithm.
出处 《南京师范大学学报(工程技术版)》 CAS 2012年第3期43-48,共6页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 淮海工学院自然科学基金(Z2011033 Z2011139)
关键词 旅行商问题 遗传算法 改进量子交叉 优化问题 traveling salesman problem (TSP), genetic algorithm (GA), improved quantum crossover, optimization problem
  • 相关文献

参考文献9

二级参考文献46

  • 1解光军,范海秋,操礼程.一种量子神经计算网络模型[J].复旦学报(自然科学版),2004,43(5):700-703. 被引量:18
  • 2解光军,周典,范海秋,操礼程.基于量子门组单元的神经网络及其应用[J].系统工程理论与实践,2005,25(5):113-117. 被引量:17
  • 3李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 4李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践,2006,26(11):116-124. 被引量:14
  • 5HOOPS/Reference Application[EB/OL].http://www.spatial.com,2010.
  • 6HOOPS 3D Application Framework[EB/OL].http://www.spatial.com,2010.
  • 7Bentley P J.Generic evolutionary design of solid objects using a genetic algorithm[D].Huddersfield,UK:University of Huddersfield,1996.
  • 8Han Kuk-Hyun, Kim Jong-Hwan. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]//Proc. of IEEE Conference on Evolutionary Computation. San Diego, USA: [s. n.], 2000: 1354-1360.
  • 9玄光南 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 10Luiz A N Lorena. A Constructive Genetic Algorithm for the Generalized Assignment Problem[M], England: Imperial College, 2000.

共引文献87

同被引文献78

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部