期刊文献+

基于非单调技术的ODE型算法

Non-monotone ODE-type Trust Region Method
在线阅读 下载PDF
导出
摘要 将非单调技术与信赖域ODE算法相结合,提出了一种求解无约束优化的新算法,从而减少了迭代次数以及信赖域子问题的计算次数.并给出在一定条件下算法的整体收敛性,数值试验表明算法有效. Non-monotone technology were combined with traditional trust region ODE-algorithm,and a new algorithm for unconstrained optimization problem were proposed,and which can reduce the number of iterations and trust region sub-problems number of calculation.Under certain assumptions,this paper also proved algorithm's global convergence.Numerical results indicated that the proposed algorithm is effective and feasible.
作者 张军 王冠舒
出处 《海南大学学报(自然科学版)》 CAS 2012年第1期16-19,共4页 Natural Science Journal of Hainan University
基金 海南省自然科学基金项目(111001)
关键词 非单调技术 信赖域ODE算法 整体收敛 无约束优化 non-monotonic technique trust region ODE-algorithm global convergence unconstrained optimization
  • 相关文献

参考文献7

  • 1BROWN A A,BIGGS M C. Some effective methods for unconstrained optimization baaed on the solution of systems of ordinary differential equations[J].Journal of Optimization Theory and Applications,1989.211-224.
  • 2OU Y G. A hybrid trust region algorithm for unconstrained optimization[J].Applied Numerical Mathematics,2011.900-909.doi:10.1016/j.apnum.2011.03.002.
  • 3OU Y G. A superlinearly convergent ODE-type trust region algorithm for nonsmooth nonlinear equations[J].Journal of Applied Mathematics and Computing,2006,(03):371-380.
  • 4DENG N Y,XIAO Y,ZHOU F J. A nonmonotonic trust region algorithm[J].Journal of Optimization Theory and Applications,1993,(02):259-285.
  • 5GRIPPO L,LAMPARIELLO F,LUCIDI S. A nonmonotone line search technique for Newton' s method[J].SIAM Journal on Numerical Analysis,1986.707-716.doi:10.1137/0723046.
  • 6韩立兴.关于无约束规划的一个ODE算法的收敛性质[J].计算数学,1993,15(4):449-455. 被引量:10
  • 7ZHOU F J,XIAO Y. A class of nonmonotone stabilization trust region methods[J].Computing,1994.119-136.doi:10.1007/BF02252985.

二级参考文献1

  • 1A. A. Brown,M. C. Bartholomew-Biggs. Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations[J] 1989,Journal of Optimization Theory and Applications(2):211~224

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部