摘要
In this paper, a new trust region algorithm for nonlinear equality constrained LC1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subprobiem with a trust region bound, but by solving a system of linear equations. Since the computational complexity of a QP-Problem is in general much larger than that of a system of linear equations, this method proposed in this paper may reduce the computational complexity and hence improve computational efficiency. Furthermore, it is proved under appropriate assumptions that this algorithm is globally and super-linearly convergent to a solution of the original problem. Some numerical examples are reported, showing the proposed algorithm can be beneficial from a computational point of view.
In this paper, a new trust region algorithm for nonlinear equality constrained LC1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subprobiem with a trust region bound, but by solving a system of linear equations. Since the computational complexity of a QP-Problem is in general much larger than that of a system of linear equations, this method proposed in this paper may reduce the computational complexity and hence improve computational efficiency. Furthermore, it is proved under appropriate assumptions that this algorithm is globally and super-linearly convergent to a solution of the original problem. Some numerical examples are reported, showing the proposed algorithm can be beneficial from a computational point of view.
基金
ThispaperissupportedbytheNNSFofChina(10401010)