期刊文献+

方形槽内水平圆管外相变蓄热过程的数值模拟 被引量:7

Numerical Simulation of the Phase-change Heat Storage Process in a Square Channel Outside Horizontal Round Tubes
原文传递
导出
摘要 对以水为热载体,方形槽内水平圆管外石蜡的相变蓄热过程进行了数值模拟。通过合理的分析与假设,建立数学模型及其定解条件,并利用实验数据进行验证。引入无量纲管壁温度Ste数和无量纲相变材料初温G数,分析了Ste和G数对相变材料熔化、凝固过程的影响,给出了不同Ste数的熔化过程固液相图,结果表明:Ste数对熔化和凝固过程有显著影响,与S=0.098时的熔化时间相比,Ste=0.1875时熔化时间将会缩短将近1/2,而Ste=0.277时比Ste=0.1875时熔化时间缩短了1/3。与Ste=0.0804时的熔化时间相比,Ste=0.170时凝固时间缩短1/2,而Ste=0.259时比Ste=0.170时凝固时间缩短了1/3。G数对相变过程的影响比较小,凝固时甚至可以忽略不计。 With water serving as the fluid for heat exchange,a numerical simulation was performed of the phase-change heat storage of parafin in a square channel and outside horizontal tubes.Through a reasonable analysis and assumptions,a mathematical model and conditions for definite solutions were established and verified by the test data.With the non-dimensional tube wall temperature Ste number and non-dimensional phase-change material initial temperature G number being introduced,the influence of the Ste and G number on the melting and solidification process of the phase-change material was analyzed with a solid-liquid phase chart of the melting process at various Ste numbers being presented.The research results show that the Ste number has a remarkable influence on the melting and solidification process.The melting duration when Ste=0.1875 is shortened by almost 1/2 compared with that when Ste=0.098.That when Ste=0.277 is shortened by 1/3 compared with that when Ste=0.1875.The solidification duration when Ste=0.0804 is shortened by 1/2 compared with that when Ste=0.170.That when Ste=0.259 is shortened by 1/3 compared with that when Ste=0.170.However,G number has a relatively small influence on the phase-change process and even the solidification duration can be neglected.
出处 《热能动力工程》 CAS CSCD 北大核心 2012年第2期181-186,262-263,共6页 Journal of Engineering for Thermal Energy and Power
基金 国家863计划基金资助项目(2007AA05Z432) 天津市科技计划项目基金资助项目(08ZCKFGX03600) 建设部软课题基金资助项目(2011-R1-28)
关键词 水平圆管 相变蓄热 数学模型 熔化 凝固过程 phase-change heat storage,mathematical model,melting,solidification
  • 相关文献

参考文献6

二级参考文献41

共引文献46

同被引文献44

  • 1吴志根,赵长颖,顾清之.多孔介质在高温相变蓄热中的强化换热[J].化工学报,2012,63(S1):119-122. 被引量:16
  • 2张兴雪,王华,王胜林,张翅远.一种新型高温复合相变蓄热材料的制备[J].昆明理工大学学报(理工版),2006,31(5):17-19. 被引量:10
  • 3方铭,陈光明.组合式相变材料组分配比与储热性能研究[J].太阳能学报,2007,28(3):304-308. 被引量:21
  • 4Quan - ying Yan, Ran Huo, Li - sha Li. Experimental study on the thermal properties of the phase change material wall formed by different methods[ J]. Solar Energy,2012,86(10) :3099 - 3102.
  • 5Caldwell Marissa A, Jeyasingh Rakesh Gnana David, Wong H - S, et al. Nanoscale phase change memory materials [ J ]. Nanoscale ,2012,4 ( 15 ) :4382 - 4392.
  • 6Ismail K A R, Alves C L F, Modesto M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder [J]. Applied Thermal Engineering, 2001,21(1): 53-77.
  • 7Lamberg P. Approximate analytical model for two-phase solidification problem in a finned phase-change material storage[J]. App -lied Energy, 2004, 77(2): 131-152.
  • 8Hendra R, Mahlia T MI,Masjuki H H. Thermal and melting heat transfer characteristics in a latent heat storage system using mikro [J]. Applied thermal engineering, 2005, 25(10): 1503-1515.
  • 9Mettawee E B S, Assassa G M R. Thermal conductivity enhancement in a latent heat storage system [J]. Solar Energy, 2007,81(7): 839-845.
  • 10Farid MM. Solar energy storage with phase change [J]. Solar Energy Res, 1986,(4): 11-29.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部