期刊文献+

基于蚁群优化的BP神经网络目标威胁估计方法 被引量:7

An Approach to Threat Assessment of Aerial Targets Based on BP Neural Network Algorithm Using Ant Colony Optimization
在线阅读 下载PDF
导出
摘要 根据空中目标威胁估计的特点,分析了基于BP神经网络的空中目标威胁估计方法的不足。运用蚁群优化算法(ACO)的全局寻优能力,对BP神经网络的初始权值进行优化,建立了改进的BP(ACOBP)空中目标威胁估计方法,解决了BP神经网络初始权值的随机性和网络易陷入局部极小值的问题,提高了算法的收敛速度。并采用30组训练样本数据及8组测试数据,对算法的性能进行了仿真分析。仿真结果表明,该算法估计结果准确合理,收敛速度和收敛精度均优于BP算法,证明了该方法的有效性。 On the basis of the characteristics of aerial targets threat assessment,the weaknesses of BP neural network for aerial targets threat assessment are analyzed. By using the ant colony optimization( ACO) algorithm seeking global excellent result to optimize the random of BP algorithm,a new aerial targets threat assessment method is established and the ACOBP algorithm is achieved by the method,which overcomes the randomness of BP network initial weights,solves the problem lost in local minimum,and improves convergence speed of the network. Finally,the performance of the algorithm is analyzed. Simulation results show the ACOBP algorithm can estimate threat degree accurately and appropriately with faster convergence and better performance than the BP algorithm,proving that the ACOBP algorithm is an effective approach to threat assessment.
作者 邓玉梅
出处 《电子科技》 2016年第7期33-35,39,共4页 Electronic Science and Technology
关键词 威胁估计 BP神经网络 全局优化 threat assessment BP neural network global optimization
  • 相关文献

参考文献10

二级参考文献57

共引文献107

同被引文献59

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部