摘要
粘弹性阻尼材料的动态力学性能通常以时温叠加得到的频率谱主曲线表征,而时温叠加过程需要测量多个温度下的频率谱,难以保证试验条件的一致性。为此,由时温叠加原理,提出频率谱—温度谱镜像关系的数学形式。基于频率谱五参数分数微分模型,提出粘弹性阻尼材料的动态力学性能温度谱六参数分数微分模型,简称温度谱模型。所提模型能直接利用动态机械分析的试验结果,对于损耗模量和损因子具有对称性或非对称性的情形均适用。温度谱模型的参数具有明确的物理含义,推导温度谱模型参数的初值公式,并给出参数辨识步骤。不同材料在不同测试条件下的动态机械分析试验表明,所提模型可较好地表征粘弹性阻尼材料动态力学性能随温度的变化。
The dynamic mechanical properties of viscoelastic damping materials are usually represented by the master curve(MC) in the frequency domain.In order to construct a MC,multiple frequency spectrums must be tested,in which case it's difficult to maintain the same test conditions.A mathematical form of the mirror relationship between the temperature spectrum and frequency spectrum is suggested according to the time-temperature superposition principle.Based on the five-parameter fractional derivative frequency spectrum model,a six-parameter fractional derivative temperature spectrum model of dynamic mechanical properties,temperature spectrum model for short,is established for viscoelastic damping materials.The proposed model can directly use the results of dynamic mechanical analysis(DMA),and is applicable whether the loss modulus and loss factor are symmetrical or asymmetrical.The six parameters in the model all have clear physical meanings,and some formulas are derived to obtain their initial values,which can be refined by the suggested parameter identification procedure.DMA tests using different materials under different experimental conditions show that,the proposed model can satisfactorily describe the dynamic mechanical properties of viscoelastic damping materials at various temperatures.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2011年第20期135-140,共6页
Journal of Mechanical Engineering
基金
国家科技重大专项课题资助项目(2010zx04008-041)
关键词
温度
粘弹性
力学性能
动态机械分析
Temperature Viscoelasticity Mechanical properties Dynamic mechanical analysis