期刊文献+

基于乘积季节ARIMA模型的供热负荷预报 被引量:8

Heat load forecasting based on multiplicative seasonal ARIMA model
在线阅读 下载PDF
导出
摘要 针对传统的供热调度缺乏对未来供热量进行有效估计这一问题,提出一种基于乘积季节ARIMA模型的供热负荷预报方法.将乘积季节ARIMA模型引入供热负荷预报,通过分析供热负荷数据其固有的趋势和周期性,建立适宜的季节性ARIMA模型,预测未来24小时的供热负荷.采用大庆地区某热力站的供热数据进行建模和仿真预测,其结果的最大误差为3.14%,日预报平均误差为1.45%.实验结果表明,给出的预报结果真实可靠,能够满足供热工程的实际需求,其预报值将成为供热负荷调度和节能的重要依据. A heat load forecasting method based on multiplicative seasonal ARIMA model was proposed in order to solve the problem that the traditional heat dispatching lacks an effective estimation for future heat load. Through introducing multiplcative seasonal ARIMA model in heat load forecasting and by analyzing the intrinsic trend and peroidicity of heat load data, the appropriate seasonal ARIMA model was established to froecast the heat load in next 24 hours. The heat load data from one heating station in Daqing city were used to perform the model establishment and simulation forecast. It is found that the maximum forecasting error is 3. 14% and the mean dally forecasting error is 1.45%. The experimental results show that the forecasting results are reliable, can meet the demands of heating engineering and provide an important basis for both heat dispatching and energy saving.
出处 《沈阳工业大学学报》 EI CAS 2011年第3期321-325,共5页 Journal of Shenyang University of Technology
基金 国家"十一五"科技支撑计划项目(2006BAJ01A04)
关键词 供热负荷预报 ARIMA模型 乘积季节ARIMA 时间序列 供热调度 供热节能 日预报 heat load forecasting ARIMA model multiplicative seasonal ARIMA time series heatdispatching energy saving daily forecasting
  • 相关文献

参考文献10

  • 1齐维贵,朱学莉.时间序列预报法在供热控制中的应用研究[J].电子学报,2003,31(2):268-270. 被引量:13
  • 2Dodier R H, Henze G P. Statistical analysis of neural network as applied to building energy prediction [ J ]. Journal of Solar Energy Engineering, 2004, 126 ( 1 ) : 592 - 600.
  • 3Chen D, York M. Neural network based approaches to very short term load prediction [ C ]//IEEE Power and Energy Society 2008 General Meeting:Conversion and Delivery of Electrical Energy in the 21 st Century. Pittsburgh, USA,2008 : 1 - 8.
  • 4黎展求,朱栋华,刘冬岩.基于支持向量回归和小波包的供热负荷预测[J].暖通空调,2007,37(2):1-5. 被引量:11
  • 5Cao L J, Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting [ J]. IEEE Transactions on Neural Networks ,2003,14 (6) : 1506 - 1518.
  • 6Dotzauer E. Simple model for prediction of loads in district-heating systems [ J ]. Applied Energy,2002,73 ( 3/4 ) :277 - 284.
  • 7Box G, Jenkins G M, Reinsel G. Time series analysis: forecasting and control [ M ]. New York: Prentice Hall ,2008.
  • 8安德洪,柳湘月,刘嘉焜,许树荆.基于季节ARIMA模型的电力负荷建模与预报[J].天津大学学报(自然科学与工程技术版),2004,37(2):184-187. 被引量:16
  • 9Rios-Moreno G J, Trejo-Perea M, Castaneda-Miranda R, et al. Modeling temperature in intelligent buildings by means of autoregressive models [ J ]. Automation in Construction,2007,16 (5) :713 - 722.
  • 10Pinson P, Nielsen T S, Nielsen H A, et al. Temperature prediction at critical points in district heating systems [ J ]. European Journal of Operational Research, 2009,194( 1 ) :163 - 176.

二级参考文献22

  • 1曹玉强,付庆华,刘传祥.分布式集中供热微机控制系统[J].自动化与仪表,1996,11(2):25-27. 被引量:1
  • 2马涛,徐向东.基于多尺度挖掘的区域供热系统负荷预测[J].暖通空调,2005,35(11):16-19. 被引量:6
  • 3胡维俭.热力交换站温度的控制[J].煤气与热力,1996,16(2):47-51. 被引量:8
  • 4汪峰,谢开,于尔铿,刘国琪,王满义.一种简单实用的超短期负荷预报方法[J].电网技术,1996,20(3):41-43. 被引量:18
  • 5周恩泽.供热负荷中短期预报理论研究[D].哈尔滨:哈尔滨建筑大学,1998.
  • 6Minoru Kawashima, Charies E Dorgan, John W Mitchell. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an artificial neural network [ J ]. ASHARE Transactions, 1995,101 (1) : 186-200.
  • 7Gudmundur R Jonsson, Valdimar K Jonsson. Equivalent outdoor temperature for district heating systems[J]. ASHARE Transactions, 1995,101(1) :394 - 399.
  • 8Curler C R, Ramaker B L. Dynamic matrix contwl-A computer control algorith[ A ]. Proc. JACC [C ]. SanFrancisco : JACC, 1980.
  • 9Box G,Jenkins G,Reinsel C.Time Series Analysis: Forecasting and Control [M].3rd Edition. Englewood Cliffs, NJ:Prentice-Hall, 1994.
  • 10Dickey D A,Fuller W A.Likelihood ratio statistics for autoregressive time series with a unit root[J]. Econometrica, 1981, 49:1057-1072.

共引文献31

同被引文献125

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部