期刊文献+

基于Unscented卡尔曼滤波的目标位置和信道参数同时估计算法 被引量:2

Target position and channel parameter simultaneous estimation algorithm based on Unscented Kalman filter
在线阅读 下载PDF
导出
摘要 针对传统非线性最小二乘估计算法和多步迭代估计算法估计节点位置和信道参数时存在的缺点,提出一种新的基于卡尔曼滤波的目标位置和信道参数同时估计算法。新算法将接收信号强度指示(RSSI)定位问题转化为非线性方程组的参数向量估计问题,使用UKF对目标位置和无线信道参数同时进行估计。试验结果表明,与非线性最小二乘方法相比,新算法定位误差更小,对信道参数的估计也更准确。 The dynamic changes of wireless channel parameters including path loss exponent and transmitting signal power significantly influence the accuracy of received signal strength indicator(RSSI) localization algorithm.To overcome this problem,a target position and channel parameter simultaneous estimation algorithm based on Unscented Kalman filter(UKF) was proposed.This algorithm converts the RSSI localization problem into parameter vector estimation problem of nonlinear equations and estimates the target position and channel parameters simultaneously using UKF.The experimental results demonstrate less localization error and more accurate parameter estimation compared with the nonlinear least square estimation.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期178-181,187,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家'863'计划项目(2009AA04Z220) 国家自然科学基金项目(61075092)
关键词 接收信号强度指示(RSSI) 定位 Unscented卡尔曼滤波(UKF) received signal strength indicator(RSSI) localization Unscented Kalman filter(UKF)
  • 相关文献

参考文献13

  • 1田国会,李晓磊,赵守鹏,路飞.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版),2007,37(5):53-59. 被引量:37
  • 2MAO G,FIDAN B,ANDERSON B.Wireless sensor network localization techniques[J].Computer Networks,2007,51:2529-2553.
  • 3GEZICI S.A survey on wireless position estimation[J].Wireless Personal Communications,2008,44(3):263-282.
  • 4TATEISHI K,LKEGAMI T.Estimation method of attenuation constant during localization in RSSI[C] //Proceedings of 2008 International Symposium on Communications and Information Technologies.Vientiane:IEEE,2008:482-487.
  • 5LU Y,LAI C,HU C,et al.Path loss exponent estimation for indoor wireless sensor positioning[J].KSII Transactions on Internet and Information System,2010,4(3):243-256.
  • 6LI X.RSS-based location estimation with unknown pathloss model[J].IEEE Trans Wireless Communication,2006,5(12):3626-3633.
  • 7AHN H,YU W.Environmental-adaptive RSSI-based Indoor localization[J].IEEE Trans Automation Science and Engineering,2009,6(4):626-633.
  • 8YAMADA I,OHTSUKI T.An indoor location estimation method by maximum likelihood using RSSI;proceedings of 3rd Sensor Network Conference[C」.Tokyo:IEEE,c2006:37-41.
  • 9ZEMEK R,ANZAI D,HARA S,et al.RSSI-based localization without a prior knowledge of channel model parameters[J].International Journal of Wireless Information Networks,2008,15:128-136.
  • 10RAPPAPORT T S.Wireless communications:principles and practice[M].2nd ed.Upper Saddle River:Prentice Hall,2001:71-74.

二级参考文献46

共引文献37

同被引文献12

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部