期刊文献+

家庭智能空间下基于场景的人的行为理解 被引量:4

Human behaviors understanding based on scene knowledge in home intelligent space
在线阅读 下载PDF
导出
摘要 为了更好地在日常生活中给人提供智能化服务,对家庭环境下人的行为理解问题进行了研究.首先利用运动目标检测方法提取运动人体在环境中的坐标,然后结合行为特点把场景划分成不同区域,建立人体在环境中的位置关联矩阵和时空关联矩阵.通过马尔可夫模型统计出人体在空间中的位置状态转移概率矩阵及其状态持续时间矩阵,生成日常行为模板.根据当前行为与日常行为模板的相似度可检测出反常习惯和突发异常行为,同时可根据不同区域的行为模式分析人的意图.在智能空间平台下利用机器视觉技术基于场景信息实现了人的行为理解,并通过实验表明了方法的有效性. Challenges in understanding human behavior in a home environment were studied in order to provide more intelligent services.First,spatial coordinates of human bodies were extracted from motion detector data.Then,by dividing the environment into different stations and observing the types of behavior typical at various periods of time in that area,a station-based occupational matrix with a time dimension was established.After establishing the station state transitional probability matrix and the state duration time distribution matrix based on the Markov model,a daily behavioral template was constructed.Behavior outside of normal habits as well as behavior resulting from unexpected accidents could be detected in real-time by comparing the similarity of current behavior with templates showing typical daily behavior.At the same time,human intention could be predicted based on behavior patterns typical in different areas.In this way,better understanding of human behavior becomes possible.The effectiveness of this method was proved by experiments.
出处 《智能系统学报》 2010年第1期57-62,共6页 CAAI Transactions on Intelligent Systems
基金 国家高技术研究发展计划重点资助项目(2006AA040206)
关键词 智能空间 机器视觉 场景信息 行为理解 异常检测 意图识别 intelligent space machine vision scene knowledge behavioral understanding anomaly detection intention recognition
  • 相关文献

参考文献12

  • 1田国会.家庭服务机器人研究前景广阔[J].国际学术动态,2007(1):28-29. 被引量:21
  • 2WANG Liang,SUTER D.Learning and matching of dynamic shape manifolds for human action recognition[J].IEEE Transactions on Image Processing,2007,16(6):1646-1661.
  • 3ISMAIL H,DAVID H,LARRY S,et al.Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 4FERRYMAN J,BORG M,THIRDE D.Automated scene understanding for airport aprons[C]//Proceedings of the 18th Australian Joint Conference on Artificial Intelligence.Sidney,2005:593-603.
  • 5BOBICK A F,DAVIS J W.The recognition of human movement using temporal templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3):257-267.
  • 6KOJIMA A.Generating natural language description of human behaviors from video images[C]//IEEE International Conference on Pattern Recognition.Barcelona,2000:728-731.
  • 7LEE M W.A model-based approach for estimating human 3D poses in static images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(6):905-916.
  • 8CHEUNG G K M,KANADE T,BOUGUET J Y,et al.A real time system for robust 3D voxel reconstruction of human motions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head,USA,2000:714-720.
  • 9WATANABE K,IZUMI K,KAMOHARA K,et al.Feature extractions for estimating human behaviors via a binocular vision head[C]//Proceedings of International Conference on Control,Automation and Systems.Seoul,Korea,2007:634-640.
  • 10YAMATO J,OHYA J,ISHII K.Recognizing human action in time-sequential images using hidded Markov model[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Champaign,USA,1992:379-385.

二级参考文献35

共引文献52

同被引文献20

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部