期刊文献+

应用支持向量机的眼睑参数疲劳预测 被引量:7

Driver fatigue prediction with eyelid related parameters by support vector machine
在线阅读 下载PDF
导出
摘要 研究表明疲劳驾驶是引起交通事故的重要原因之一,因此有必要采取预防措施,而能够提前对事故进行准确预报并保证低误报警率是问题的关键所在.提出了利用多眼睑运动特征参数建立支持向量机模型进行疲劳预测的方法,其中眼睑运动特征参数是从驾驶模拟器上采集的眼电信号提取出的.根据Karolinska睡眠等级选出25名缺乏睡眠并在实验中撞到振动带的驾驶员,保证其开始驾驶阶段是警觉的,而事故发生阶段是疲劳的,然后将20名驾驶员作为训练对象,另5名驾驶员作为验证对象.结果表明,所用的方法可以提前至少5 min对由疲劳导致的事故进行预报. Various investigations show that drivers' drowsiness is one of the main causes of traffic accidents. Thus, countermeasure device which should be able to predict the accidents accurately with low ratio of false alarms is currently required in many fields for sleepiness related hazard prevention. Drowsiness prediction was conducted by support vector machine (SVM) with eyelid related parameters extracted from the electrooculography(EOG) data collected in a driving simulator. 25 sleep-deprived subjects which hit the rumbles while driving in the experiment were selected based on the karolinska sleepiness scale (KSS) to make sure they were alert as they started driving and sleepy when the hits occurred, and then they were divided into training set including 20 subjects and validation set including the other 5 subjects. The validation results show that the hits can be successfully predicted at least five minutes ago by our SVM model.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第8期929-932,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 欧盟SENSATION资助项目FP6(507231)
关键词 支持向量机 眼电 疲劳预测 support vector machine Electrooculography(EOG) fatigue prediction
  • 相关文献

参考文献12

  • 1Hamada T, Ito T, Adachi K, et al. Detecting method for drivers'drowsiness applicable to individual features [ J]. IEICE Trans on Information and Systems,2004, E87-D ( 1 ) :88 - 96.
  • 2Wierwille W W, Lewin M G, Fairbanks R J. Final reports: research on vehicle-based driver status/performance Monitoring, Part III [R]. DOT HS 808 640, 1996.
  • 3Hayami T, Matsunaga K, Shidoji K, et al. Detecting drowsiness while driving by measuring eye movement-a pilot study [ C ]// In Proc 5th Int Conference on Intelligent Transportation Systems. USA : IEEE, 2002 : 156 - 161.
  • 4Ji Q, Yang x J. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance [ J ]. Real-Time Imaging,2002, 8 : 357 -377.
  • 5Liu X, Xu F L, Fujimura K. Real-time eye detection and tracking for driver observation under various light conditions [ C ]// IEEE Intelligent Vehicle Symposium. USA: IEEE, 2002:344 - 351.
  • 6Morris T L, Miller J C. Electrooculographic and performance indices of fatigue during simulated flight [ J ]. Biological Psychology, 1996,42:343 - 360.
  • 7Ji Q, Zhu Z Z,Lan P L. Real-time nonitrusive monitoring and prediction of driver fatigue [J]. IEEE Transactions on Vehicular Technology,2004, 53 (4) : 1052 - 1068.
  • 8Caffier P P, Erdmann U,Ullsperger P. Experimental evaluation of eye-blink parameters as a drowsiness measure [J]. Eur J Appl Physiol,2003 ,89 :319 - 325.
  • 9Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Min Knowl Disc, 1998,2 (2) :121 - 167.
  • 10Cristiannini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods [ M ]. Cambridge: Cambridge University Press, 2000.

同被引文献66

引证文献7

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部