期刊文献+

一种新的模糊C均值聚类算法 被引量:3

A New Fuzzy C-Means Algorithm
在线阅读 下载PDF
导出
摘要 传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基于属性加权的模糊C均值聚类算法,通过对人工数据和实际数据的聚类测试结果,证实了该算法的有效性. Because the Standard fuzzy C-means algorithm and most of its extensions treat all the attributes equally in clustering process,they can't discover the latent cluster structure.However,some attributes contribute more than others in some cases.Considering this,this paper proposes a new attribute weighted fuzzy C-means algorithm.The results of the numerical experiment prove the validity of the new algorithm.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第2期201-205,共5页 Journal of Henan University:Natural Science
关键词 权值 属性加权 模糊指数 模糊C均值聚类算法 weight attribute weighted fuzzy exponent fuzzy C-means algorithm
  • 相关文献

参考文献16

  • 1P E Green, F J Carmone, J Kim. A preliminary study of optimal variable weighting in k means clustering[J]. J. Classifi cation, 1990,7:271-285.
  • 2W S Desarbo, J D Carroll, I. A Clark, et al. Synthesized clustering: A method for amalgamating clustering bases with dif ferential weighting variables[J]. Psychometrika, 1984, 49 : 57- 78.
  • 3G De Soete. Optimal variable weighting for ultrametrie and addilive tree elustering[J]. Quality and Quantity, 1986, 20:169-180.
  • 4G De Soete. OVWTRE: A program for optimal variable weighting for uhrametric and additive tree fitting[J]. J. Classifi cation, 1988, 5: 101-104.
  • 5E Fowlkes, R Gnanadesikan, J Kettenring. Variable selection in clustering[J]. J. Classification, 1988, 5:205-228.
  • 6G Miliigan. A validation study of a variable weighting algorithm for cluster analysis[J]. J. Classification, 1989,6: 53-71.
  • 7R Gnanadesikan, J Kettenring, S Tsao. Weighting and selection of variables for cluster analysis[J]. J. Classification, t995,12:113-136.
  • 8V Makarenkov, 13 Leclere. An algorithm for the fitting of a tree metric according to a weighted least-squares criterion[J]. J. Classification,1999,16: 3-26.
  • 9V Makarenkov, P l.egendre. Optimal variable weighting for ultrametric and additive trees and K-Means partitioning: Methods and software[J]. J. Classification,2001,18:245-271.
  • 10J H Friedman, J J Meulman. Clustering objects on subsets of attributes[J]. J. Royal Statistical Soc. B. , 2001,66(4): 815-849.

二级参考文献18

  • 1Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981.
  • 2Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.
  • 3Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67.
  • 4Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633.
  • 5Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 6Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354.
  • 7Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 8Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117.
  • 9Baraldi A, Blonda P, Parmiggiani F et al. Model transitions in descending FLVQ. IEEE Transactions on Neural Networks,1998,9(5) :724-737.
  • 10Dave R N, Krishnapuram R. Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 1997,5 (2) :270-293.

共引文献96

同被引文献20

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部