期刊文献+

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping
在线阅读 下载PDF
导出
摘要 The purpose of this paper is to analyze the dynamic behavior of fractional-order four-order hyperchaotic Lii system, and use the Open-Plus-Closed-Looping (OPCL) coupling method to construct the system's corresponding response system, and then implement function projective synchronization (FPS) of fractional-order drive-response system with system parameters perturbation or not. Finally, the numerical simulations verify the effectiveness and robustness of this scheme.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期617-621,共5页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant Nos.60573172,60973152 Doctoral Program Foundation of Institution of Higher Education of China under Grant No.20070141014 the Natural Science Foundation of Liaoning Province of China under Grant No.20082165
关键词 HYPERCHAOTIC FPS OPCL FRACTIONAL-ORDER 超混沌系统 封闭式循环 投影同步 分数阶 开放式 动态行为 耦合方法 Open
  • 相关文献

参考文献34

  • 1L.M. Pecora and T.L. Carroll, Phys. Rev. Lett. 64 (1990) 821.
  • 2H.G. Zhang, Y. Xie, Z. Wang, and C. Zheng, IEEE Trans. Neural Netw. 18 (2007) 1841.
  • 3H.G. Zhang, H.X. Guan, and Z.S. Wang, Pro. Nat. Sci. 17 (2007) 687.
  • 4X.J. Wu and Y. Lu, Nonlinear Dyn. 57 (2009) 25. doi:10.1007/sl 1071-008-9416-5.
  • 5H.G. Zhang, W. Huang, Z.L. Wang, and T.Y. Chai, Phys. Lett. A 350 (2006) 363.
  • 6Y.Q. Yang and Y. Chen, Chaos, Solitons and Fractals 39 (2009) 2378.
  • 7R. Mainieri and J. Rehacek, Phys. Rev. Lett. 82 (1999) 3042.
  • 8D.L. Xu and Z.G. Li, Int. J. Bifurcation Chaos 12 (2002) 1395.
  • 9Y. Chen, H.L. An, and Z.B. Li, Appl. Math. Comput. 19r (2008) 96.
  • 10X. Gao and J.B. Yu, Chin. Phys. 14 (2005) 908.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部