期刊文献+

A new hyperchaotic system and its linear feedback control 被引量:2

A new hyperchaotic system and its linear feedback control
在线阅读 下载PDF
导出
摘要 This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results. This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4039-4046,共8页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundations of China (Grant Nos 70571030 and 90610031) the Advanced Talents’ Foundation of Jiangsu University of China (Grant No 07JDG054)
关键词 HYPERCHAOS linear feedback control Lyapunov exponents BIFURCATION hyperchaos, linear feedback control, Lyapunov exponents, bifurcation
  • 相关文献

参考文献28

  • 1Lorenz E N 1963 J. Atmos. Sci. 20 130
  • 2Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
  • 3Lu J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
  • 4Lu J H, Chen G R and Clikovsk'y S 2002 Int. J. Bifur. Chaos 12 2917
  • 5Qi G Y, Chen G R, Du S Z, Chen Z Q and Yuan Z Z 2005 Phys. A 352 295
  • 6Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P and Rhodes W T 2003 Opt. Spectr. 95 114
  • 7Cai G L and Huang J J 2007 J: Jiangsu University 28 269
  • 8Vicente R, Dauden J, Colet P and Toral R 2005 IEEE J. Quantum Electron. 41 541
  • 9Cenys A, Tamasevicius A and Baziliauskas A 2003 Chaos, Solitons and Fractals 17 349
  • 10Cai G L and Huang J J 2007 Int. J. Nonlinear. Sci. 3 213

同被引文献19

  • 1王光义,郑艳,刘敬彪.一个超混沌Lorenz吸引子及其电路实现[J].物理学报,2007,56(6):3113-3120. 被引量:53
  • 2禹思敏,吕金虎.高阶蔡氏电路及其FPGA实现[C]//第26届中国控制会议论文集,湖南张家界.北京:北京航空航天大学出版社,2007.409-413.
  • 3LV Jin-hu, YU Xing-huo, CHEN Guan-rong, et al. Characterizing the synchronizability of small-world dynamical networks[ J]. IEEE transactions on circuits and systems- 1,2004,51 (4) :787-796.
  • 4ZHENG Zuo-huan, LV Jin-hu, CHEN Guan-rong, et al. Generating two simultaneously chaotic attractors with a switching piecewise-linear controller [ J ]. Chaos, Solitons and Fractals ,2004,20:277-288.
  • 5QI Guo-yuan, CHEN Guan-rong, DU Su-zheng, et al . Analysis of a new chaotic system[ J]. Physica A, 2005, 352 (6) : 295-308.
  • 6禹思敏,吕金虎.高阶蔡氏电路及其FPGA实现[c].北京:北京航空航天大学出版社.2007:409-413.
  • 7LU JINHU,YU X1NGHUO,CHEN GUANRONG, et al. Characterizing the Synchronizability of Small - WoAd Dynamical Networks [ J ]. IEEE transactions on circuits and systems - I, 2004, 51 (04): 787 - 796.
  • 8ZHENG ZUOHUAN,LU JINHU,CHEN GUANRONG, et al. Generating Two Simultaneously Chaotic Attractors with a Switching Piece-wise - Linear Controller [ J]. Chaos, Solitons and Fractals, 2004, (20) :277 -288.
  • 9QI GUOYUAN, CHEN GUANRONG, DU SUZHENG, et al. Analysis of a New Chaotic System [ J ]. Physica A, 2005,352 ( 06 ) : 295 - 308.
  • 10刘扬正,姜长生,林长圣,孙晗.四维切换超混沌系统[J].物理学报,2007,56(9):5131-5135. 被引量:27

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部