期刊文献+

椭圆曲线基点判断算法的多核并行化 被引量:1

Parallel algorithm of judging base points for elliptic curve cryptosystems on multicore architectures
在线阅读 下载PDF
导出
摘要 椭圆曲线基点的判断是实现椭圆曲线密码系统(elliptic curve cryptosystems,ECC)的基础。提出了一种针对ECC的基点并行判断算法,此算法基于OpenMP共享存储模型,其并行效率在多核处理器平台上获得了显著的提高,最高达到了110%。实验表明,并行后的基点判断算法的运行速度相比并行前得到了明显提高;并行效率随着n(标量的二进制长度)的增大而逐渐趋于稳定;循环缓存容量对并行效率的提升没有影响;算法能够抵抗旁道攻击。因此,该算法可用于提高ECC基点的选取速度,进而提高整体加/解密速度。 Base-point judgment algorithm is the basis of ECC. This paper proposed a parallel base-point judgment algorithm based on OpenMP for ECC. Promoted the parallel efficiency of this algorithm significantly on multicore system with a maximum of approximate to 110 % . Moreover,investigated a comparison between this algorithm and the related algorithm,and gave the experimental data. The results show that the efficiency of the base-point judgment algorithm is obviously improved. As the binary size of scalar ascend,the parallel efficiency descends,and keeps stable at the end. In addition,the capacity of circular cache has no affect on parallel efficiency,the algorithm offers better security against SCA. Therefore,the proposed algorithm can be applied to speed up the selection of base-point,and then promote the efficiency of ECC.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3545-3548,共4页 Application Research of Computers
关键词 椭圆曲线 椭圆曲线密码系统 标量乘 基点 并行算法 多核 OPENMP 并行效率 elliptic curve ECC scalar multiplication base-point parallel algorithm multicore OpenMP parallel efficiency
  • 相关文献

参考文献10

  • 1刘晓玲.GF(p)上椭圆曲线密码的并行基点选取算法研究[J].计算机应用研究,2007,24(4):33-36. 被引量:1
  • 2张金山.用分布式并行算法选取GF〔p〕上椭圆曲线的基点[J].计算机仿真,2004,21(4):54-55. 被引量:3
  • 3SOLINAS J A.An improved algorithm for arithmetic on a family of elliptic curves[C]// Proc of Advances in Cryptology-CRYPTO '97.1997:357-371.
  • 4OpenMP Architecture Review Board.OpenMP specifications v3.0[S/OL].(2008-05).http://www.openmp.org/mp-documents/spec30.pdf.
  • 5OUINN M J.Parallel programming in C with MPI and OpenMP[M].[S.l.]:Brooks/McGraw-Hill,2003.
  • 6IEEE P1363,Standard specifications for public-key cryptography[S/OL].(1999).http://indigo,ie/-msoott/.
  • 7王许书,王昭顺,曲英杰.基于复合域上的椭圆曲线密码体制的计算算法[J].小型微型计算机系统,2002,23(8):1007-1009. 被引量:4
  • 8BLAKE I F,SMARTN S.Elliptic curves in cryptography[M].Cambridge:Cambridge University Press,2002.
  • 9KOBLITZ N.Elliptic curve cryptosystems[J].Mathematics of Computation,1987,48(177):203-209.
  • 10ANSARI B,WU Hua-peng.Parallel scalar multiplication for elliptic curve cryptosystems[C]// Proc of International Conference on Communications,Circuits and Systems.2005:71-73.

二级参考文献25

  • 1张金山.用分布式并行算法选取GF〔p〕上椭圆曲线的基点[J].计算机仿真,2004,21(4):54-55. 被引量:3
  • 2侯整风,李岚.椭圆曲线密码系统(ECC)整体算法设计及优化研究[J].电子学报,2004,32(11):1904-1906. 被引量:30
  • 3[1]Koblitz,N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987 48:203~209
  • 4[2]Sliverman J H. The arithmetic of elliptic curves[M]. GTM106, New York: Springer-Verlag, 1986
  • 5[3]Morain,F. and Olivos,J. Speeding up the computations on an elliptic curve using addition-subtraction chains[J].Inform.Theor.Appl.(1990) 24,531~543.
  • 6[4]Miller,V. Uses of elliptic curves in cryptography[C]. In Advances in Cryptology-CRYPTO 85, Springer-Verlag,Berlin, 1986.417~426.
  • 7[5]Hasan,M. Wang,M. and Bhargava,V. Modular construction of low complexity parallel multipliers for a class of finite Fields GF(2m)[J].IEEE Trans. On Computers, Aug 1992.41(8): 962~971
  • 8[6]Paar,C. A new architecture for a parallel finite field multiplier with low complexity based on composite fields[J]. IEEE Trans. On Computers, 45(7): 856~861, July 1996.
  • 9[7]Lidl,R. and Niederreiter,H. Finite fields, volume 20 of encryclopedia of mathematics and its applications[M]. Addison-Wesley, Reading , Massachusetts, 1983.
  • 10[8]Wang.Charles C. VLSI architectures for computing multiplications and inverses in GF(2m)[J]. IEEE Trans. On Computers, August 1985.Vol C-34(8): 709~717

共引文献4

同被引文献9

  • 1殷顺昌,赵克佳.一种基于POMP的OpenMP程序负载均衡分析方法[J].计算机工程与应用,2006,42(35):84-87. 被引量:3
  • 2Abadi M, Birrell A, Harris T, et al. Semantics of transac- tional memory and automatic mutual exclusion[ J]. ACM Trans. on Programming Languages and Systems,2011,33 (1) :1-50.
  • 3Loh E. The ideal HPC programming language [ J ]. Com- munications of the ACM ,2010,53 (7) :42-47.
  • 4Bhattacharjee A, Contreras G, Martonosi M. Paralleliza- tion libraries: Characterizing and reducing overheads [ J ]. ACM Trans. on Architecture and Code Optimiza- tion,2011,8( 1 ) :5-29.
  • 5Chapman B, Jost G, Vander P R. Using OpenMP : porta- ble shared memory parallel programming [ M ]. 1 st ed. Oxford Cambridge : MIT Press ,2007.
  • 6Akhter S, Roberts J. Multi-core programming : increasing performance through software multi-threading [ M ]. Li Baofeng Translated. 1 st ed. Beijing:Publishing House of Electronics Industry,2007.
  • 7Maronju A, Benini L. Efficient OpenMP support and ex- tensions for MPSoCs with explicitly managed memory hierarchy[ C ]//Proceedings of the Conference on De- sign, Automation and Test in Europe, Nice, France, 2009 : 809 -814.
  • 8刘胜飞,张云泉,孙相征.一种改进的OpenMP指导调度策略研究[J].计算机研究与发展,2010,47(4):687-694. 被引量:15
  • 9牟少敏,杜海洋,苏平,查绪恒,陈光艺.一种改进的快速并行细化算法[J].微电子学与计算机,2013,30(1):53-55. 被引量:42

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部