期刊文献+

一些图的Mycielski图的均匀邻强边染色 被引量:4

On equitable adjacent strong edge coloring of Mycielski graph of some graphs
在线阅读 下载PDF
导出
摘要 如果图G的一个正常边染色满足相邻点的色集不同,且任意两种颜色所染边数目相差不超过1,则称为均匀邻强边染色,其所用最少染色数称为均匀邻强边色数.本文得到了路、圈、星和扇的Mycielski图的均匀邻强边色数. A proper edge coloring of graph G is called equitable adjacent strong edge coloring if colored sets from every two adjacent vertices incident edge are different,and the number of edges in any two color classes differ by at most one,which the required minimum number of colors is called the equitable adjacent strong edge chromatic number.In this paper,we obtain the equitable adjacent strong edge chromatic numbers of mycielski graphs of pan,cycle,star,and fan.
出处 《纯粹数学与应用数学》 CSCD 2010年第4期581-586,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(40301037) 国家民委科研项目(05XB07) 西北民族大学中青年科研基金(X2007-012)
关键词 MYCIELSKI图 均匀邻强边染色 均匀邻强边色数 Mycielski graph equitable adjacent strong edge coloring equitable adjacent strong edge chromatic number
  • 相关文献

参考文献10

二级参考文献20

共引文献124

同被引文献26

  • 1ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.D(β)-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2006,49(10):1430-1440. 被引量:56
  • 2Sheng Bau,李明哲,刘林忠,张忠辅.图P_2×C_n 的均匀邻强边色数(英文)[J].经济数学,2002(3):15-18. 被引量:8
  • 3田双亮,李敬文,张忠辅.P_n^2和P_n^(n-1)的均匀邻强边色数[J].数学的实践与认识,2006,36(3):244-248. 被引量:10
  • 4张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:97
  • 5张忠辅,李敬文,赵传成,任志国,王建方.若干联图的点可区别均匀边色数[J].数学学报(中文版),2007,50(1):197-204. 被引量:15
  • 6Bazgan C, Harkat-Benhamdine A, Li H, et al. On the vertex-distinguishing proper edge-colorings of graphs[J]. J. of Combin. Theory, Ser. B, 1999,75:288-301.
  • 7Burris A C, Schelp P~ H. Vertex-distinguishing proper ede-colorings[J]. J. of Graph Theory, 1997,26(2):73-82.
  • 8Zhang Z F, Li M C, Yao B, et al. On the vertex distinguishing equitable edge-coloring of graphs[J]. ARS Combintoria, 2008,86:193-200.
  • 9Bondy J A, Murty U S R. Graph Theory with Applications[M]. New York: The Macmillan Press Ltd., 1976.
  • 10KBAZGAN C, HARKAT-BENHAMDINE A, I.I H,ed al. On the vertex-distinguishing proper edge-colorings of graphs[J]. J Combin Theory: Ser B, 1999,75 : 288-301.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部