期刊文献+

若干联图的点可区别均匀边色数 被引量:15

On the Vertex-Distinguishing-Equitable Edge Chromatic Number of Some Join-Graphs
原文传递
导出
摘要 k-正常边染色法f,若满足任两个不同点的关联边色集不同,则称f为G的k-点可区别边染色,简记为k-VDEC of G,并称最小的k为G的点可区别边色数;对k-VDEC若再满足任意两色的边数之差不超过1,则称f为G的点可区别均匀边染色,简记为k-VDEEC of G,并称最小的k为G的点可区别均匀边色数.本文得到了图等阶的路和路,路和圈,圈和圈的联图的点可区别均匀边色数. A k-proper edge coloring of a simple graph G is called vertex-distinguishing edge coloring of G if for any two distinct vertices u and v in G, the set of colors assigned to the edges incident to u differs from the set of colors assigned to the edges incident to v, is abbreviated k-VDEC, the minimal number k of colors required for vertexdistinguishing edge coloring of G is called the vertex-distinguishing edge chromatic number of G, is denoted by χ′vd(G). For a k-VDEC of G, it satisfied with the difference for any two sets of colors included the edges not more than 1 also, it is called k-vertex- distinguishing-equitable edge coloring of G, abbreviated to k-VDEEC. And the minimal number k is called the vertex-distinguishing-equitable edge chromatic number of G, denoted by χ′vde(G). In this paper, we obtain the vertex-distinguishing-equitable edge chromatic numbers of join-graphs of path and path, path and cycle, cycle and cycle with equivalent order.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第1期197-204,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(40301037)
关键词 联图 path cycle join-graph
  • 相关文献

参考文献14

  • 1Burris A. C., Schelp R. H., Vertex-distinguishing Proper Edge-colorings, J. of Graph Theory, 1997, 26(2):73-82.
  • 2Bazgan C., Harkat-Benhamdine A., Li H., Wozniak M., On the vertex-distinguishing proper edge-coloring of graph, J. of Combine Theory, Set. B, 1999, 75: 288-301.
  • 3Balister P. N., Bollobas B., Schelp R. H., Vertex-distinguishing coloring of graphs with △(G)=2, Discrete Mathematics, 2002, 252(2): 17-29.
  • 4Balister P. N., Riordan O. M., Schelp R. H., Vertex-distinguishing coloring of graphs, J. of Graph Theory,2003, 42: 95-109.
  • 5Favaron O., Li H., Schelp R. H., Strong edge coloring of graphs, Discrete Mathematics, 1996, 159: 103-109.
  • 6Zhang Z. F., Liu L. Z., Wang J. F., Adjacent strong edge coloring of graphs, Applied Mathematics Letters,2002, 15: 623-626.
  • 7Balister P. N., Bollobas B., Schelp R. H., On the adjacent vertex-distinguishing edge coloring of graphs with △(G) ≤ 3, J. of Graph Theory (in Press).
  • 8Zhang Z. F., Li J. W., Chen X. E. et al., On the vertex-distinguishing-equitable edge coloring graphs, Submmit,2003.
  • 9Zhang Z. F., Li J. W., Chen X. E., et al, D(β) Vertex-distinguishing proper edge-coloring of graphs, Acta Mathematica Sinica, Chinese Series, 2006, 49(3): 703-708.
  • 10Song H. M., Liu G. Z., On fedge cover coloring of graphs, Acta Mathematica Sinica, Chinese Series, 2005,48(5): 919-928.

同被引文献83

引证文献15

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部