摘要
在扩散限制凝聚模型基础上引入粒子的自旋自由度,将磁耦合系数扩展为随自旋间距离幂次变化的非常数项J/ra,采用Monte Carlo方法研究在二维三角格点基底上具有幂次相互作用的磁性团簇形貌及其分形维数Df的演化规律.模拟结果表明,对于较大的幂指数α值,即α≥5时,团簇形貌随耦合参数J的变化较小,其分形维数Df在1.50~1.70之间;随着α值的减小,团簇形貌随参数J有一明显的演化过程,在模拟范围内,分形维数Df在1.20~1.90之间.
In a diffusion-limited aggregation model with spin freedom in each particle,morphology and fractal dimension Df of magnetic clusters grown on two-dimensional triangular lattices are investigated with Monte Carlo study.Power-law interaction J /ra is used.It shows that as α≥5 patterns of clusters hardly vary with J.Their fractal dimensions range from 1.50 to 1.70.With decreasing α,morphology evolution of clusters exhibits rich behaviors.Fractal dimension Df changes continuously from about 1.20 to 1.90.
出处
《计算物理》
EI
CSCD
北大核心
2010年第4期608-612,共5页
Chinese Journal of Computational Physics
基金
国家自然科学基金(批准号:10574109)
浙江省教育厅(批准号:Y200803475)资助项目
关键词
幂次相互作用
形貌
分形维数
power-law interactions
morphology
fractal dimension