期刊文献+

二维磁性团簇形貌及其分形维数的数值研究

Numerical study on the morphology and fractal dimension of two-dimensional magnetic clusters
在线阅读 下载PDF
导出
摘要 在扩散限制凝聚(DLA)模型基础上,采用Monte Carlo方法模拟了具有幂次相互作用的磁性粒子动力学凝聚过程.重点研究了在不同幂指数。值下团簇的形貌及其分形维数Df随耦合参数膨的演化规律.模拟结果表明:对于较大的α值,即α=5时,团簇形貌随雕的变化较小,其分形维数Df一般在1.60~1.70;而随着α值的减小,团簇形貌随参数βC有一明显的演化过程,在模拟范围内,分形维数Df在1.20~1.95. Based on the diffusion-limited aggregation (DLA) model, the kinetic aggregation process of magnetic particles with power-law interactions was investigated by Monte Carlo simulation. The morphology and fractal dimension Df of the clusters as well as their evolutions with coupling parameter βC at different values of α were studied in detail. The simulation showed that, for α= 5, the patterns of the clusters almost do not vary with βC, and their fractal dimensions are in the range between 1.60 and 1.70; However, for the small value of α, the morphology of the clusters and its evolution exhibit rich behaviors, and the fractal dimension Df changes continuously from about 1.20 to 1.95.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第4期404-408,共5页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10574109)
关键词 扩散限制凝聚模型 幂次相互作用 分形维数 diffusion-limited aggregation power-law interactions fractal dimension
  • 相关文献

参考文献11

  • 1BRUNE H, CHRISTOPH R, RODER H, et al. Mechanism of the transition from fractal to dendritic growth of surface aggregates [J]. Nature, 1994,369 : 469-471.
  • 2AVNIR D, BIHAM O, LIDAR D, et al. Is the geom etry of nature fractal? [J]. Science, 1998,279 : 39-40.
  • 3JENSEN P. Growth of nanostructures by cluster dep osition: Experiments and simple models[J]. Rev Mod Phys, 1999,71 : 1695-1735.
  • 4WITTEN T A, SANDER L M. Diffusion-limited aggregation, a kinetic critical phenomenon[J]. Phys Rev Lett, 1981,47: 1400-1403.
  • 5INDIVERI G, LEVI A C, GLIOZZI G, et al. Cluster growth with long-range interactions [J]. Thin Solid Films, 1996,284-285 : 106-109.
  • 6INDIVERI G, SCALAS E, LEVI A C, et al. Morphologies in two-dimensional growth with attractive long-range interactions [J]. Physica A,1999,278:217-280.
  • 7CANNAS S A, MAGALHAES A C N, TAMARIT F A. Evidence of exactness of the mean-field theory in the nonextensive regime of long-range classical spin models [J]. Phys Rev B,2000,61:11521-11528.
  • 8PASTOR-SATORRAS R, RUBI J M. Long-range-interaction induced ordered structures in deposition processes [J]. Plays Rev Lett, 1998,80 : 5373-5376.
  • 9KRECH M, LUIJTEN E. Optimized energy calculation in lattice systems with long-range interactions [J]. Phys Rev E,2000,61:2058-2064.
  • 10XUXJ, CAI P G, YE Q L, et al. Effects of longrange magnetic interactions on DLA aggregation [J]. Phys Lett A,2005,338,1-7.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部