期刊文献+

基于活性污泥模型的污水COD组分划分方案研究 被引量:22

Activated Sludge Model Based COD Fractionation in Wastewater Characterization
原文传递
导出
摘要 活性污泥数学模型(ASM)在污水处理厂的成功应用与进水组分的正确划分密切相关.从标准化和定量化的角度利用3个批式试验开发了COD组分划分方案及Matlab计算程序.该方案在上海2个污水处理厂的测定结果表明,曲阳污水厂进水COD中含有8.1%±1.6%的易生物降解组分SS、6.3%±2.2%的溶解性惰性组分SI、45.5%±3.5%的慢速生物降解组分XS、31.1%±2.1%的颗粒性惰性组分XI和9.0%±1.1%的异养菌组分XH.而白龙港污水厂进水COD中含有11.1%±2.2%的SS、9.9%±2.0%的SI、38.9%±10.7%的XS、23.3%±9.8%的XI和16.9%±1.8%的XH.与曲阳污水厂相比,白龙港污水厂进水COD中XS和XI含量偏低,而XH/COD值则明显偏高,表明长距离管道输送会显著影响COD组分浓度. The successful application of activated sludge model(ASM) in wastewater treatment plant mainly depends on the correctness of wastewater fractionation.Based on three batch oxygen uptake rate(OUR) tests,a COD fractionation protocol and the corresponding Matlab program were developed to aid the standardization of COD fractionation in wastewater.COD fractionation results of two wastewater treatment plants(WWTP) in Shanghai show that COD in wastewater of the Quyang WWTP is composed of 8.1% ± 1.6% readily biodegradable COD(SS),6.3% ± 2.2% soluble inert COD(SI),45.5% ± 3.5% slowly biodegradable COD(XS),31.1% ± 2.1% particulate inert COD(XI) and 9.0% ± 1.1% heterotrophic biomass(XH),and those fractions in wastewater of the Bailonggang WWTP are 11.1% ± 2.2%,9.9% ± 2.0%,38.9% ± 10.7%,23.3% ± 9.8% and 16.9% ± 1.8%,respectively.Compared to the Quyang WWTP,wastewater of the Bailonggang WWTP showed lower XS and XI contents in COD,but greatly higher XH /COD value,indicating that long pipeline transportation could significantly influence the concentration of COD fractions.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第6期1478-1482,共5页 Environmental Science
基金 上海市科贸能力建设项目(08160512600) 上海市自然科学基金项目(08ZR1408800) 上海电力学院科研基金项目
关键词 活性污泥数学模型 污水 COD组分划分 activated sludge model(ASM) wastewater COD fractionation
  • 相关文献

参考文献22

  • 1Henze M, Gujer W, Mino T, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 [ R]. London: IAW Publishing, 2000.
  • 2Henze M. Characterization of wastewater for modeling of activated sludge process [J]. Water Sci Technol, 1992, 25(6) : 1-15.
  • 3Lagarde F, Tusseau-Vuillemin M, Lessard P, et al. Variability estimation of .urban wastewater biodegradable fractions by respirometry [J]. Water Res, 2005, 39(19): 4768-4778.
  • 4Orhon D, Cokgor E U. COD fractionation in wastewater characterization: The state of the art [ J ]. J Chem Technol Biotechnol, 1997, 68(3) : 283-293.
  • 5Morgenroth E, Kommedal R, Harremoes P. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment - a review [ J]. Water Sci Technol, 2002, 45(6) : 25-40.
  • 6Boursier H, Beline F, Paul E. Piggery wastewater characterisation for biological nitrogen removal process design [ J ]. Bioresource Technol, 2005, 96 (3): 351-358.
  • 7Roeleveld P J, Van Loosdrecht M C M. Experience with guidelines for wastewater characterization in the Netherlands [ J]. Water Sci Technol, 2002, 45 (6) : 77-87.
  • 8Orhon D, Karahan O, Sozen S. The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters [J]. Water Res, 1999, 33 (14) : 3191- 3203.
  • 9Mathieu S, Etienne P. Estimation of wastewater biodegradable COD fractions by combining respirometirc experiments in various So/Xo ratios [J]. Water Res, 2000, 34(4) : 1233-1246.
  • 10Witteborg A, Van der Last A, Hamming R, et al. Respirometry for determination of the influent Ss concentration [ J]. Water Sci Technol, 1996, 33(1) : 311-323.

二级参考文献52

  • 1Henze M, Gujer W, Mino T, et al. Activated Sludge Moedels ASM1, ASM2, ASM2d and ASM3 [R]. London: IAW Publishing, 2000.
  • 2Orhon D, Cokgor E U. COD fractionation in wastewater characterization-the state of the art [J]. J Chem Tech Biotechnol, 1997, 68(3) : 283-293.
  • 3Cokgor E U, Sozen S, Orhon D, et al. Respirometric analysis of activated sludge behaviour-I: assessment of the readily biodegradable substrate [J]. Water Res, 1998, 32(2) : 461-475.
  • 4Roeleveld P J, van Loosdercht M C M. Experience with guidelines for wastewater characterization in the Netherlands [ J ]. Water Sci Technol, 2002, 45(6): 77-87.
  • 5Brdjanovic D, van Loosdercht M C M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder [J]. Water Res, 2000, 34(3): 846-858.
  • 6Salem S, Berends D, Heijnen J J, et al. Model-based evaluation of a new upgrading concept for N-removal [ J]. Water Sci Technol, 2002, 45(6) : 169-176.
  • 7Makinia J, Swinarski M, Dobiegala E. Experiences with computer simulation at two large wastewater treatment plants in northern Poland [J]. Water Sci Technol, 2002, 45(6) : 209-218.
  • 8Makinia J, Rosenwinkel K H, Spering V. Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP [J]. Water Res, 2005, 39(8): 1489-1502.
  • 9Wang C, Zeng Y, Lou J, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model [J]. Biochem Eng J, 2007, 33(3) : 217-227.
  • 10Koch G, Ktthni M, Gujer W, et al. Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater [ J ]. Water Res, 2000, 34(14): 3580-3590.

共引文献238

同被引文献267

引证文献22

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部