期刊文献+

基于信息融合的水文预测技术研究 被引量:3

Hydrological Prediction Technology Research Based on the Information Integration
在线阅读 下载PDF
导出
摘要 从系统的角度研究了信息融合技术的基础理论,在介绍了信息融合系统的融合层次、功能模型和结构模型后,重点研究了信息融合的常用算法的优缺点。小波分析、遗传算法、神经网络与混沌分析进行信息融合时可采用辅助式、合作式、松散耦合式、紧致耦合式等。结果表明:在应用混沌预测前,小波消噪是有效的,遗传算法和神经网络相结合取长补短为混沌预测提供支持也是有效的。 This paper studied the fundamental theory of information integrated technology from the systematic perspective. After the introduction of integration hierarchy, function model and framework model, this paper mainly focused on the research of advantages and disadvantages of common algorithms used in information Integration. Patterns such as auxiliary mode, cooperation pattern, loose coupling mode and compact coupling mode were taken when wavelets analysis, genetic algorithms, neural networks and chaos analysis were applied in information integration. The results showed that wavelet de-noising is effective before applying the chaos prediction. The advantages of genetic algorithms and neural networks can complement each other, when they are combined used together. It is effective that this combination provides support for chaos predietion.
出处 《水资源与水工程学报》 2009年第5期91-96,共6页 Journal of Water Resources and Water Engineering
关键词 神经网络 小波消噪 遗传算法 混沌预测 neural networks wavelet de-noising genetic algorithms chaos prediction
  • 相关文献

参考文献12

  • 1Waltz E L,Buede D M. Data Fusion and Decision Support for Command and Control[J]. IEEE Trans. Syst. Man Cybem. 1986,16(6) :865--879.
  • 2Hall D L, linas J L. An Introduction to Multisensor Data Fusion[J]. Proceedings of the IEEE. 1997,85 (1) : 6 --23.
  • 3Dasarathy B V. Sensor Fusion Potential Exploitation innovative Architectures and Illustrative Applieations[J].Proceedings of the IEEE. 1997,85(1):24--38.
  • 4Huang G B, Saratchandran P, Sundararajan N. A Gen-eralized Growing and Pruning RBF(GGAP- RBF) Neural Network for Function Approximation [J]. IEEE Tran. On Neural Networks, 2005,16(1):57--67.
  • 5李致家,周轶,马振坤.River channel flood forecasting method of coupling wavelet neural network with autoregressive model[J].Journal of Southeast University(English Edition),2008,24(1):90-94. 被引量:1
  • 6王红瑞,宋宇,刘昌明,陈家军.混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407. 被引量:47
  • 7Sivakumar B. Chaos theory in hydrology: Important issues and Interpretations [J]. Journal of Hydrology, 2000,227 : 1--20.
  • 8Donoho D H De. Noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41 (3) : 813 --617.
  • 9王秀杰,练继建,费守明.基于小波消噪的水文系统混沌特性识别[J].系统工程理论与实践,2008,28(2):170-175. 被引量:4
  • 10Chaog E J, LiPPmann R P. Using Genetic Algorithm to Improve Panern Classification Performance [C]//. Advancesin Neural Information Processing. San Mateo, 1991:797--803.

二级参考文献68

共引文献53

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部