期刊文献+

River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1

基于小波神经网络和自回归模型耦合的河道洪水预测方法(英文)
在线阅读 下载PDF
导出
摘要 Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 在分析非线性河道洪水预报方法中常用BP神经网络不足的基础上,采用具有快速收敛和更有效非线性逼近能力特性的小波神经网络.为适应洪水演进的时变特性,将所建立的用于河道洪水预报的小波神经网络与自回归实时校正模型耦合,校正值为小波神经网络预报值与自回归模型预报误差之和.自回归实时校正模型的参数通过自适应衰减因子递推最小二乘动态更新以提高校正效果.将该方法应用于西江高要断面洪水预报,计算结果验证了其有效性.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.50479017).
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor 河道洪水预测 小波神经网络 自回归模型 递推最小二乘 自适应衰减因子
  • 相关文献

参考文献6

二级参考文献29

共引文献107

同被引文献11

  • 1刘媛媛,练继建,朱云.遗传算法改进的BP神经网络在混沌径流时间序列预测中的应用[J].水文,2007,27(2):45-48. 被引量:5
  • 2Waltz E L,Buede D M. Data Fusion and Decision Support for Command and Control[J]. IEEE Trans. Syst. Man Cybem. 1986,16(6) :865--879.
  • 3Hall D L, linas J L. An Introduction to Multisensor Data Fusion[J]. Proceedings of the IEEE. 1997,85 (1) : 6 --23.
  • 4Dasarathy B V. Sensor Fusion Potential Exploitation innovative Architectures and Illustrative Applieations[J].Proceedings of the IEEE. 1997,85(1):24--38.
  • 5Huang G B, Saratchandran P, Sundararajan N. A Gen-eralized Growing and Pruning RBF(GGAP- RBF) Neural Network for Function Approximation [J]. IEEE Tran. On Neural Networks, 2005,16(1):57--67.
  • 6Sivakumar B. Chaos theory in hydrology: Important issues and Interpretations [J]. Journal of Hydrology, 2000,227 : 1--20.
  • 7Donoho D H De. Noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41 (3) : 813 --617.
  • 8Chaog E J, LiPPmann R P. Using Genetic Algorithm to Improve Panern Classification Performance [C]//. Advancesin Neural Information Processing. San Mateo, 1991:797--803.
  • 9Bartlett P, Downs T. Training a Neural Network with Genetic a Algorithm[R]. Technical Report. Univ. of Queensland, 1990.
  • 10王秀杰,练继建,费守明.基于小波消噪的水文系统混沌特性识别[J].系统工程理论与实践,2008,28(2):170-175. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部