摘要
财务危机预警由于其在经济管理实践中的重要性,日益受到广泛关注。就财务危机预警问题而言,首要问题是如何从大量备选指标中科学地选择预警指标。本文在对已有研究进行分析的基础上,应用邻域粗糙集模型对预警备选指标进行属性约简,得到利益相关者重点观测和预警建模所需的预警指标。研究结果显示,邻域粗糙集约简明显优于经典粗糙集约简,能够以较少的特征变量实现较高的分类精度。
Financial Crisis early Warning has increasingly attracted the extensive attention due to its importance in the economic management practice. On the questions of the financial crisis early warning, the first question is how to select the early warning index from a large number of alternative indexes scientifi- cally. Based on the analysis of existed researches, this paper applies the neighborhood rough set model for attribute reduction of early warning alternative indexes, and gets the early warning index observed by stakeholders and needed by modeling of early warning. The result suggests that the neighborhood rough set model is better than the classic rough set model, and it can give a higher classification accuracy by a fewer characteristics variables.
出处
《经济管理》
CSSCI
北大核心
2009年第8期130-135,共6页
Business and Management Journal ( BMJ )
基金
国家自然科学基金项目"复杂信息系统的粒度结构与知识获取研究"(60773133)
山西省社科研究规划项目"山西省上市公司财务危机预警实证研究"(0705102)
山西大学校人文社科基金项目"企业财务危机预警的实证分析"(0609020)
关键词
邻域粗糙集
财务危机预警
10折交叉验证
neighborhood rough set
financial crisis early warning
10 - fold cross validation