摘要
针对大样本支持向量机内存开销大、训练速度慢的缺点,提出了一种改进的支持向量机算法。算法先利用KNN方法找出可能支持向量,然后利用SVM在可能支持向量集上训练得到分类器。实验表明改进算法训练速度提高明显。
The problem of occupying much memory and slow training speed will come forth for Support Vector Machine(SVM) with large scale training set.This paper puts forward a boundary K-NN SVM algorithm,searching for possible support vectors with K-NN and training SVM classifier based on such support vectors.Experiment shows that modified algorithm training speed is advanced.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第23期15-17,62,共4页
Computer Engineering and Applications
基金
国家社会科学基金项目(No.08CTQ003)
广东省哲学社会科学规划项目(No.06M03)
关键词
支持向量机
大样本
分类
Support Vector Machine(SVM)
large-scale samples
classification