期刊文献+

有新样本加入的支持向量机的学习策略

A Learning Strategy of Support Vector Machine Introducing New Samples
在线阅读 下载PDF
导出
摘要 在支持向量机的学习过程中,有些情况下训练样本不能一次全部给出,这样当有新样本加入训练集时,支持向量集和训练样本集的等价关系将被打破。为了解决这个问题,本文提出了有新样本加入的支持向量机的学习策略。通过对新样本的分析,选出能代替原样本和新样本进行学习的样本,并给出这些样本应满足的条件,最后给出了相应的学习策略。对标准数据集的实验表明,本学习策略可以在新增样本增加后,有效压缩样本集的大小,提高分类的速度,舍弃无用的样本,同时保证了分类精度。 Sometimes an entire training sample can not be given at a time,in this case the equivalence between the support vector set and training set will be broken when new samples are introduced into the training set.In order to solve this problem this paper proposes a learning strategy of support vector machine introducing new samples.By analyzing the new samples,the samples replacing the old and new samples for learning are selected and the condition to satisfy these samples is given.Finally,the strategy of learning is given.The experimental results with the standard dataset show that the training time is greatly reduced while the classification precision is guaranteed.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第5期70-72,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(60574075)
关键词 支持向量机(SVM) KKT条件 分类 新样本 Support vector machine Karush-Kuhn-Tucker conditions Classification New samples
  • 相关文献

参考文献8

二级参考文献20

  • 1曾文华,马健.支持向量机增量学习的算法与应用[J].计算机集成制造系统-CIMS,2003,9(z1):144-148. 被引量:27
  • 2XIAO Rong,WANG Ji-cheng,ZHANG Fa-yan.An approach to incremental SVM learning algorithm[C]//ICTAI2000.Vancouver,British Columbia,Canada:IEEE,2000:268-273.
  • 3SYED N,LIU H,SUNG K K.Incremental learning with support vector machines[C]//IJCAI 1999.Stockholm:Morgan kaufmann publishers,1999:352-356.
  • 4]KRISTIN P B,ERIN J B.Geometry in learning[R].New York:Rennselaer Polytechnic Institute,1996.
  • 5.[EB/OL].http://www.bupa.co.uk/,.
  • 6Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期
  • 7Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 9Muller K R, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Transon Neural Networks,2001,12(2) : 181-201.
  • 10Burges C J C. A tutorial on Support Vector Machines for Pattern Recognition[J]. Knowledge Discovery and Data Mining, 1998,2(2) :121-167.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部