期刊文献+

我国财政风险非线性预警系统——基于BP神经网络的研究 被引量:20

Research on Chinese Fiscal Risk Non-linear Early-Warning System——Based on BP Neural Network
原文传递
导出
摘要 本文在原有财政风险指数预警的基础上,构建了基于神经网络的财政风险预警系统,得出影响我国财政风险的最重要因素是债务风险,其次是财政收支风险;再次是金融风险和宏观经济风险。2008年我国总体财政风险为中警状态,其中,债务风险为重警状态,财政收支为中警状态,金融风险为中警状态,宏观经济为中警状态。在当前国际经济形势发生重大转折的情况下,我国一定要加强对地方债务的化解力度,减少金融危机对实体经济的冲击,保持宏观经济的平稳增长,这样我国的财政风险便会在可控的范围内。 The authors construct neural network's fiscal risk early-warning system based former index early-warning system. It concludes that the most important factor affecting our country fiscal risk is the debt risk, which occupies 49.17% of the entire fiscal risk. Next is the fiscal revenue and expenditure risk, which occupies 20.06% of the entire fiscal risk. The other factors are financial risk and the macro economic risk, which account for about 8% respectively. The neural network fiscal risk early-warning system forecasts our country overall finance risk in 2008 is as follows. The debt risk will be under heavily risk condition, fiscal revenue and expenditure will be under medium risk condition, financial risk will be under medium risk condition, macro economic will be under medium risk condition. At present the international economy situation has under significant transitions, we should strengthen to resolve local government's debt, reduce the financial crisis's impact to the real economy, and maintain the macro economic steady growth. In that way our country's fiscal risk will be under controllable scope.
出处 《经济管理》 CSSCI 北大核心 2009年第5期147-153,共7页 Business and Management Journal ( BMJ )
关键词 财政风险 风险预警 神经网络 fiscal risk risk early-warning neural network
  • 相关文献

参考文献9

二级参考文献45

共引文献83

同被引文献285

引证文献20

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部